

Geometry, Duality and Robust Computation in Engineering

VACLAV SKALA
Department of Computer Science and Engineering

Faculty of Applied Sciences, University of West Bohemia
Univerzitni 8, CZ 306 14 Plzen

Czech Republic
skala@kiv.zcu.cz http://www.VaclavSkala.eu

Abstract: - Robustness of computations in engineering is one of key issues as it is necessary to solve technical
problems leading to ill conditioned solutions. Therefore the robustness and numerical stability is becoming a
key issue more important that the computational time. In this paper we will show selected computational issues
in numerical precision, well known cases of failures in computations. The Euclidean representation is used in
today’s computations, however the projective space (an extension of the Euclidean space) representation leads
to more compact and robust formulations and to matrix-vector operations supported in hardware, e.g. by GPU.

Key-Words: - Euclidean space, projective space, homogeneous coordinates, duality, intersections, barycentric
coordinates, planes intersection, Plucker coordinates, numerical precision.

1 Introduction

Data processing is one of the main fields in
computer science. Data processing itself can be split
to two main areas:

• processing of textual data
• processing of numerical data

Nowadays, computers use binary system for
information and data representation. We use octal or
hexadecimal representation for data representation.
If we would be direct descendants of tetrapods we
would have a great advantage as they had 8 fingers
on a hand, see Fig.1. However, we have 5 fingers at
a hand and use a decimal numeral system and for
computation we use numbers with a decimal point,
rational and irrational ones.

The above mentioned main two areas are quite
different, but have many common algorithms, e.g.
hashing. In the case of textual data we have
“unlimited” dimensionality (”unlimited” length of a
string) but limited interval of values (usually given
by a number of symbols in the given alphabet). On
the contrary in the case of numerical or geometrical
data we have a limited dimensionality (usually 2 or
3 in the case of E2 or E3) but “unlimited” interval of
values (usually (-∞, ∞)). In the case of hashing
techniques it lead us to a “unified” approach of
hashing, but different construction and specification
of the hash function used [8], [36], [37].

 Name Base Digits E min E max
BINARY

B 16 Half 2 10+1 −14 15
B 32 Single 2 23+1 −126 127
B 64 Double 2 52+1 −1022 1023
B 128 Quad 2 112+1 −16382 16383

DECIMAL
D 32 10 7 −95 96
D 64 10 16 −383 384
D 128 10 34 −6143 6144

IEEE 758-2008 standard
Table 1

Figure 1

WSEAS TRANSACTIONS on COMPUTERS Vaclav Skala

E-ISSN: 2224-2872 275 Issue 9, Volume 11, September 2012

Numerical data processing and numerical
computations bring quite significant difficulties due
to the limited precision of a real number
representation as the floating point representation
offers only a limited length of a mantissa and
exponent. The standard IEEE754 specification
offers the following formats, see Tab.1. It should be
noted however that not all the modes are supported
in many cases on different CPUs. Today’s
programming standard languages do not offer
constructions for computation with an “arbitrarily”
long integers or “unlimited” mantissa length
(Algol 68 had a construction long that could extend
the basic data type, e.g. long long real etc.).
Unfortunately it leads to numerical problems and
possibly to disasters in engineering applications.
There are also problems connected to uncontrolled
overflow, infinities and NaN results [49].

There are several attempts, like logarithmic
number representation [16] or continued fraction
computation [2], [14]. However those approaches do
not solve the principal problem as well.

It should be noted that the majority of computer
science students are NOT AWARE of those aspects
at all.

2 Numerical Precision and Robustness
Numerical data processing and numerical
computation is the heart of nearly all engineering
problems solution. On the other hand it seems to
that in the engineering courses there is no attention
given to the numerical precision in connection with
the robustness of algorithms.

From the floating point representation it can be
seen that the absolute precision depends on the
actual exponent significantly, as the precision is
given by the length of the mantissa multiplied by
the exponent. As the mantissa is of the given
length, not all numbers even rational numbers can
be represented in a computer; of course irrational
numbers cannot be stored in any case. It means that
a value x is somehow modified in order to fit into
the actual floating point representation. It means that
a stored value x represents actually an interval [a, b],
i.e. any value from this interval is represented in a
memory as one value x.

As values are used in numerical operations it is
necessary to ask, at least in the case of basic
arithmetic operations, what is the influence to the
precision?

Let as assume that we have two numbers x and y
x = [a,b], y = [c,d].

The following interpretation of the basic
arithmetic operations demonstrate how actual
precision is defined.
• x + y = [a + c, b + d]
• x - y = [a - d, b - c]
• x × y = [min(ac, ad, bc, bd),

max(ac, ad, bc, bd)]
• x / y = [min(a/c, a/d, b/c, b/d),

max(a/c, a/d, b/c, b/d)] if y ≠ 0
There are well known identities like

ߙଶݏ݋ܿ ൅ ߚଶݏ݋ܿ ൌ 1
and

xଶ െ yଶ ൌ ሺݔ െ ݔሻሺݕ ൅ ሻݕ
However these identities are not valid if the floating
point representation is used. For a computation of
xଶ െ yଶ it is better to use ሺݔ െ ݔሻሺݕ ൅ ሻ due toݕ
better precision in evaluation, as if |ݔ| ൐ then |ݕ|
ଶݔ ب ଶݕ ଶ and therefore some last digits of theݕ
mantissa might be lost in the final subtraction.

Actually all statements like
• if <float> = <float> then ….
• if <float> ≠ <float> then ….

should not be allowed in programming languages or
at least a warning message should be generated.
Usually this problem is “solved” by constructions

if abs (x - y) < epsilon then … or
if abs (x) < epsilon then q:= y / x else ERROR ,

but nobody knows what is the proper value of
epsilon.

Let us explore a little bit the numerical problems
on very simple examples, now.

2.1 Quadratic Equation Solution
The quadratic equation is well known and used it is
a part of many engineering problems solutions. Let
us consider two formulations as follows [19]:

ଶݐܽ ൅ ݐܾ ൅ ܿ ൌ 0 resp. 2ݐ ൅ ݐ݌ ൅ ݍ ൌ 0

The solution usually used is

ଵ,ଶݐ ൌ
െܾ േ √ܾଶ െ 4ܽܿ

2ܽ
resp.

ଵ,ଶݐ ൌ
െ݌ േ ඥ݌ଶ െ ݍ4

2

or if substitute ݐ ൌ 1 ߬ൗ

߬ଵ,ଶ ൌ
2ܿ

െܾ േ √ܾଶ െ 4ܽܿ

However in some cases the “standard” formula can
lead to incorrect results due to a limited number
precision. If ܾଶ ب 4ܽܿ then it is recommended to
use the following formula

WSEAS TRANSACTIONS on COMPUTERS Vaclav Skala

E-ISSN: 2224-2872 276 Issue 9, Volume 11, September 2012

ݍ ൌ െሺܾ ൅ ሺܾሻඥܾଶ݊݃݅ݏ െ 4ܽܿ ሻ/2
ଵݐ ൌ ݍ

ܽൗ ଶݐ ൌ ܿ⁄ܽ
to get more reliable results.

It can be seen that even such a simple case might
be quite sensitive to the numerical precision.

2.2 Function Value Computation
Computation of a function value is one of the basic
common operations in engineering problems.
However many programmers are not aware of the
danger in the coding process. There seems to be two
the most dangerous cases:

• division by a value close to zero, e.g. in an
intersection computation of two nearly
parallel lines

• addition or subtraction of two values with
significantly different absolute value, e.g.
recently mentioned xଶ േ yଶ .

As the result of this, the summation (repeated
addition) result depends on the order of summation
in general.

Let us explore one very interesting case [20] and
some other interesting comments [1], [13], [18].
݂ሺݔ, ሻݕ ൌ ଺ݕ333.75

൅ ଶݕଶݔଶሺ11ݔ െ ଺ݕ െ ସݕ121 െ 2ሻ
൅ ଼ݕ5.5 ൅ ሻݕሺ2/ݔ

The question is, what is the value of the function if
it is evaluated at ݔ ൌ ݕ ,77617 ൌ 33096 if
different floating point precision is used.
݂ ൌ 6.33835 10ଶଽ in single precision
݂ ൌ 1,1726039400532 in double precision
݂ ൌ 1,1726039400531786318588349045201838
 in extended precision
However even the result in the extended precision is
incorrect and even the sign itself is incorrect. The
correct! The correct result is “somewhere” in the
interval of
ሾെ0,827396059946821368141165095479816
 29૛૙૙૞,
െ0,827396059946821368141165095479816
 29૚ૢૡ૟ሿ
if approx. 40 digits were used [13]. Of course this
function is constructed in a special way, but it
demonstrate that

• simple increase of precision does not
guarantee the correctness of the result

• roundoff error has significant influence to
for a limited floating point computation.

Detailed analysis of this function can be found in [1]
and the correct result is

݂ሺݔ, ሻݕ ൌ െ2 ൅
ݔ

ݕ2
ൌ

54767
66192

Unfortunately precision of the numerical results are
significantly influenced by compilers properties and
options used, as the optimization of the code is not
considering the numerical stability issues.

2.3 Addition and Computational Order
So far we have dealt with “complicated cases”,
usually seen as “not practical”. Power series
summation is one of the very practical and often
used computations. Let us imagine simple examples
of summation if single precision is used [52]:

෍ 10ିଷ ൌ 0.999990701675415
ଵ଴య

௜ୀଵ

or

෍ 10ିସ ൌ 1.000053524971008
ଵ଴ర

௜ୀଵ

It can be seen that in the both cases the result should
be one. The correctness in summation is very
important in power series computations, e.g.

෍
1
݊

 ൌ 14.357357
ଵ଴ల

௡ୀଵ

or if the reverse order is used

෍
1
݊

 ൌ 14.392651
ଵ

௡ୀଵ଴ల

It means that even for a small number of elements
we do not obtain correct results.

2.4 Recursion
Recursion is very useful tool for finding a nice
description of a problem solution, e.g. well known
Tower of Hanoi, however if implemented directly it
might causes some problems, like the stack
overflow etc. The algorithm itself can be described
as follows:

MOVE (A, C, n);
{ MOVE (A, B, n-1);
 MOVE (A, C, 1);
 MOVE (B, C, n-1)
}
MOVE (from, to, number) #

This recursive elegant solution is simple to
implement and only stack overflow can be expected;
Iterative solution is known as well.

WSEAS TRANSACTIONS on COMPUTERS Vaclav Skala

E-ISSN: 2224-2872 277 Issue 9, Volume 11, September 2012

The recursive definition usually leads to two
main searching strategies in implementation:

• depth first search
• breath first search

Those strategies are fundamental to artificial
intelligence methods.

Let us explore recursive definition of the well
known Ackermann function. The Ackerman
function [44] is defined as follows:

,ሺ݉ܣ ݊ሻ

ൌ ቐ
݊ ൅ 1 ݂݅ ݉ ൌ 0
ሺ݉ܣ െ 1,1ሻ ݂݅ ܯ ൐ 0 ܽ݊݀ ݊ ൌ 0

൫݉ܣ െ 1, ,ሺ݉ܣ ݊ െ 1ሻ൯ ݂݅ ݉ ൐ 0 ܽ݊݀ ܰ ൐ 0

This function is simple, but the problem its
computation as the value of the function grows very
fast as

ሺ4,4ሻܣ ൌ 2ଶమలఱఱయల
ൌ 2ଶభబభవళమవల

As the computation is made in integers, no overflow
is detected at all.

However engineering applications are more
oriented to computation with numbers in floating
point representation.

2.4 Continuous Fractions
There is one very interesting approach based on
continuous fractions. It enables to represent even
irrational numbers in some cases. The basic
definition can be described as:

ݔ ൌ ܾ଴ ൅
ܽଵ

ܾଵ ൅ ܽଶ

ܾଶ ൅ ܽଷ

ܾସ ൅ ܽଷ
…

If ܽ௜ ് 1 then it is the case of generalized
continuous fractions. If ܽ௜ ൌ 1 then ߨ can be
expressed as ߨ ൌ ሾ3; 7,15,1,292,1,1,1,2,1,3,1 … ሿ.
As ߨ ൌ can be expressed as ߨ ሺ1ሻ then ݊ܽݐܿݎܽ 4
[48]

ߨ ൌ
4

1 ൅ 1ଶ

3 ൅ 2ଶ

5 ൅ 3ଶ

…

We can see that this number representation is quite
different and detailed description can be found in
[14].

We have presented some selected fundamental
issues in numerical computations that have direct
influence to results of numerical computation.

There is a significant question how today’s
computations are reliable and robust as we are using
a continuous mathematical models, but using
discrete systems for physical phenomena
representation; number of digits for a number
representation is limited. Only very careful coding
with regard to numerical errors can prevent disaster
situations and possible losses on humans.

2.4 Matrix Inversion
Matrix inversion is very often used in solution of
engineering problems. However in many cases the
matrix is ill conditioned and the results are not
checked to the correctness of the solution. Many
libraries available just return a matrix, which might
be far from the matrix inverted we would expect
without any message or warning message.

Let us assume a matrix inversion as

࢞࡭ ൌ ࢞ ࢈ ൌ ࢈ଵି࡭

and the Hilbert’s Matrix
௜௝ࡴ ൌ ଵ

௜ା௝ିଵ

then the inversion of the matrix is known in the
analytical form and can be expressed as

௜௝ࡴ
ିଵ ൌ ሺെ1ሻ௜ା௝ሺ݅ ൅ ݆ െ 1ሻ

൬݊ ൅ ݅ െ 1
݊ െ ݆ ൰ ቀ݊ ൅ ݆ െ 1

݊ െ ݅ ቁ ቀ݅ ൅ ݆ െ 2
݅ െ 1 ቁ

ଶ

The inversion of the Hilbert’s matrix can be used to
evaluate algorithms or available numerical library
for the stability and correctness of results delivered.
Matrix inversion and a linear system of equations
can be solved effectively without division operation
if projective geometry is used [21], [22].

3 Numerical Disasters
There are famous examples of numerical disasters.
When reading the original reports and followed
comments and details one must be really surprised
how simple errors occur and should be worried what
could happen in complex problems solution. Let us
shortly explore some “traditional” cases.

The following is a modified excerpt from public
resources [45] - [47], [50], [51], [54].

3.1 Explosion of Ariane 5
An Ariane 5 rocket was launched by the European
Space Agency (ESA) on June 4, 1996. The
development cost over $7 billion. The rocket

WSEAS TRANSACTIONS on COMPUTERS Vaclav Skala

E-ISSN: 2224-2872 278 Issue 9, Volume 11, September 2012

exploded after lift-off in about 40 sec. Destroyed
rocket and cargo were valued at $500 million. The
cause of a failure was a software error in inertial
reference system. From the CNN article:

“The failure of the Ariane 501 was caused by the
complete loss of guidance and attitude information
37 seconds after start of the main engine ignition
sequence (30 seconds after lift-off). This loss of
information was due to specification and design
errors in the software of the inertial reference
system.

The internal SRI [Inertial Reference System]
software exception was caused during execution of
a data conversion from 64-bit floating point to 16-
bit signed integer value. The floating point number
which was converted had a value greater than what
could be represented by a 16-bit signed integer.”

The conversion from the floating point to the
integer representation is very dangerous as it is not
reported by an exception and stored value represents
an existing number.

Figure 2

Courtesy of CNN

3.2 Patriot Missile Failure
The system was originally designed in mid-1960 for
a short and flexible operation. There were several
mishaps in the Patriot system failure. The system
was actually running for more than 100 hours) and
for intercepting cruise missiles running at MACH 2
speed and was used to intercept the Scud missile
running at MACH 5. The computation of
intercepting and hitting was based on time counting
with 24 bits integers with the clock of 1/10[s] and
speed computation in floats. The clock setting to
1/10[s] was a critical issue and not acceptable even
for application in sport activities at that time.
Unfortunately 1/10 = 1/24+1/25+1/28+1/29+1/212+....
and therefore the error on 24 bits is about
0.000000095 and in 100 hours the error is 0.34. As
the Scud flies at MACH 5, the error was actually
687[m] and the missile was out of the “range gate”
area.

As a result of the fault assumptions, incorrect
software design and irresponsible attitude of the
army officials, 28 Americans were killed and over

100 other people injured in the Iraq’s Scud missile
attack in Dhahran, Saudi Arabia on February 25,
1991 according to the GAO report.

3.1 Offshore Platform Sinking

Figure 3

Courtesy of GAO report

Another well known example is the Sleipner
offshore platform sinking. It should be noted that
the top deck is about 57 000 tons, drilling and
support equipments weight about 40 000 tons and
the deck provides an accommodation for about 200
people.

Courtesy of SINTEF

Figure 4

The Sleipner platform structure was “optimized”
using finite element system and the shear stresses
were underestimated nearly by 50%. It led to serious
cracks in the structure and leakage that the pumps
were unable to cope with [51]. The sinking of the
platform estimated cost is about $700 million.

WSEAS TRANSACTIONS on COMPUTERS Vaclav Skala

E-ISSN: 2224-2872 279 Issue 9, Volume 11, September 2012

All the above mentioned examples are well
known; images and the text were used or adapted
from the referenced resources.

We have presented above some basic facts on
numerical precision and examples of some disasters.
Many engineering problems are somehow
connected with geometry and geometrical
computations with respecting physical phenomena
etc. The majority of computations are made in the
Euclidean space representation and with the
Cartesian coordinate system.

In the following we will show how the non-
Euclidean representation, actually its projective
extension, and the principle of duality can be used to
solve some problems in a simple, robust and elegant
ways.

4 Projective Space and Duality
The Euclidean space representation is used in
today’s computations using the floating point
representation. Unfortunately the imprecision of the
floating point computations is given by a number of
mantissa digits that is limited. However the
robustness of algorithms is more connected with the
mathematical formulation and the actual
implementation as well.

In many cases the Euclidean representation leads
to unnecessary computations that even decrease the
computational precision. The division operation is
heavily used in engineering computations and it
decreases the precision of computation significantly.
There is a question if the division operation can be
eliminated or at least postponed within the
computational pipeline. In geometry, the projective
representation is a way how things could be made
simple, robust and easy to implement. Due to
matrix-vector architecture additional speed can be
expected as well.

4.1 Projective Space Representation
The projective space is actually an extension of the
Euclidean space where no metrics is directly
available. However it has several advantages, e.g. a
point at infinity is well represented and can be used
for computation.

The homogeneous coordinates are mostly
introduced with the geometric transformations
concept and used for the projective space
representation. Many books and technical papers
define mathematically how to make transformations
from the homogeneous coordinates to the Euclidean
coordinates and vice versa. However, geometrical

interpretation is missing in nearly all publications.
Therefore, the question is how to imagine the
projective space P2 and representations of elements.

Mutual transformations for the E2 case are
defined as:

X = x / w Y = y /
where: w ≠ 0, point x = [x, y: w]T and x∈P2,
X = [X, Y]T and X∈E3.

Let us consider a situation at Fig.5.a. We can see
that the point X∈E2 in the Euclidean space is
actually a line p in the projective space P2 passing
the given point X∈E2 at the plane w = 1 (that is the
Euclidean space actually) and the origin of the
projective space P2. It means that all the points x∈P2
of the line (excluding the origin at [0, 0: 0]T)
represent the same point in the Euclidean space.
Similarly, transformation for the E3 case is defined
as:

X = x / w Y = y / w Z = z / w
where: w ≠ 0, point x = [x, y, z: w]T and x∈P3,
X = [X, Y, Z]T and X∈E3.

x y

w

w=1
x

X Y

(a)

p
P2

E2

ρ

a b

c

c=1
D(p)

D()ρ

A B

(b)

D(P)2

D(E) 2

Figure 5

Euclidean, projective and dual space representations

Let us assume the Euclidean space E2, see
Fig.5.a. We actually use the projective space
whenever we use the implicit representation for
graphical elements. The Euclidean space E2 is
represented as a plane w = 1. For simplicity, let us
consider a line p defined as:

aX + bY + c = 0

We can multiply it by w ≠ 0 and we get:

awX + bwY + cw = 0 , i.e

ax + by + cw = 0

i.e.
pTx = 0

p = [a, b: c]T x = [x, y: w]T
It is actually a plane ρ in the projective space P2
(excluding the point [0, 0: 0]T, i.e. the origin)
passing through the origin. The vector of
coefficients p represents the line p∈E2:

p = [a, b: c]T

WSEAS TRANSACTIONS on COMPUTERS Vaclav Skala

E-ISSN: 2224-2872 280 Issue 9, Volume 11, September 2012

Let us assume a dual representation in Fig.5.b. In

the dual representation in which the point [a, b: c]T
actually represents a line D(p)∈D(E2) given by the
point [a, b: c]T and the origin of the dual space, see
[29], [30], [38], [41], [42], [25], [27] for details on
projective geometry.

It is necessary to note that any ξ ≠ 0 can multiply
the equation for a line without any effect to the
geometry. It means that there are different vectors of
coefficients p that represent the same line p∈E2.

In the dual coordinate system, those points
[a, b: c]T will form a line D(p). We can project the
line D(p), e.g. to a plane with c = 1, and we get a
point. It means that the line p∈E2 is a point in
the dual representation D(p)∈D(E2) and vice
versa.

This a phenomenon of a principle of duality that
can be used for derivation of some useful formula.

4.2 Principle of Duality
Let us consider an equation

pTx = 0

From the mathematical notation we cannot
distinguish whether p is a line and x is a point or
vice versa in the case of P2. It means that a point and
a line are dual in the case of P2, and a point and a
plane are dual in the case of P3.

The principle of duality in P2 states that any
theorem remains true when we interchange the
words “point” and “line”, “lie on” and “pass
through”, “join” and “intersection”, “collinear” and
“concurrent” and so on. Once the theorem has been
established, the dual theorem is obtained as
described above, see [12], [5], [6], [26], [27], [28],
[35] for details.

In other words, the principle of duality says that
in all theorems it is possible to substitute the term
“point” by the term “line” and the term “line” by the
term “point” etc. in E2 and the given theorem stays
valid. Similar duality is valid for E3 as well, i.e. the
terms “point” and “plane” are dual etc. This helps
a lot to solve some geometrical problems [3], [4],
[11], [15], [17].

4.2.1 E2 Case
In the E2 case, parameters of a line given by two
points or an intersection point of two lines are
computed very often. We will use the duality
principle in which a point is dual to a line and vice
versa.

In the first case, the solution is simple if the
points are not in the homogeneous coordinates. If
they are given in the homogeneous coordinates, the
coordinates are converted to the Euclidean
coordinates and then parameters of the line are
computed.

In the second case, a linear system of equations
of the degree two is usually solved and division is to
be performed. It is necessary to note that any
division operation decreases robustness of
computation.

A new approach performing an appropriate
computation in projective space is presented [31] - ,
[34]. It will allow us to avoid division operations.

Definition1
The cross-product of two vectors x1, x2∈E2, if given
in the homogeneous coordinates, is defined as (if
w = 1 the standard formula is obtained):

222

11121

zyx
zyx
kji

xx =×

where: i = [1,0:0]T, j = [0,1:0]T, k = [0,0:1]T

()

1
1

1

1

22

1121

2

2

2

2

1

1

1

1
21

222

111

212121

YX
YXww

w
y

w
x

w
y

w
xww

wyx
wyx

ww

kji

kjikji

xxXX

===

=×=×

Theorem1
Let two points x1, x2∈E2 be given in the projective
space. Then a line p∈E2 defined by those two points
is determined as a cross-product:

p = x1 × x2

where: p = [a, b: c]T and xi = [xi, yi: wi]T

Proof1
Let the line p∈E2 is defined as:

ax + by + c = 0
The end-points must satisfy 01 =pxT and 02 =pxT ,
i.e.

WSEAS TRANSACTIONS on COMPUTERS Vaclav Skala

E-ISSN: 2224-2872 281 Issue 9, Volume 11, September 2012

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
0
0

222

111

c
b
a

wyx
wyx

It results to a standard:

1
1

2

1
y
y

a =
 1

1

2

1
x
x

b −=
 22

11
yx
yx

c =

and therefore the cross-product defines the line p,
i.e.

p = x1 × x2

Note: This is valid also generally for all the cases
when w ≠ 0. The proof is left to a reader.

Now we can apply the principle of duality directly.
Theorem2
Let two lines p1, p2∈E2 be given in the projective
space. Then a point x defined as an intersection of
those two lines is determined as a cross product:

x = p1 × p2.
where: x = [x, y: w]T and p = [a, b: c]T.

Proof2
This is a direct consequence of the principle of
duality application.

222

11121

cba
cba
wyx

=×= ppx

where: x = [x, y: w]T

These two theorems are very important as they
enable us to handle some problems defined in the
homogeneous coordinates directly and make
computations quite efficient as we can postpone the
division operation.

The direct impact of these two theorems is that it
is very easy to compute a line given by two points in
E2 and an intersection point of two lines in E2 as
well. The presented approach is convenient if
matrix-vector operations are supported in hardware,
especially for GPU applications.

Note that we do not need to solve linear system
of equations to find the intersection point of two
lines and if the result can remain in the
homogeneous coordinates, no division operation is
needed.

Of course, there is a question, how to handle the
E3 cases.

4.2.2 E3 Case
The E3 case is a little bit complicated as the
projective geometry and duality offer more

possibilities, but generally a point is dual to a plane
and vice versa. So let us explore how to find:

• a plane defined by three points given in the
homogeneous coordinates,

• an intersection point of three planes.
To find a plane is simple if points are converted to
the Euclidean coordinates. It requires use of the
division operation and therefore robustness is
decreased in general.

Let us explore the extension possibility of the E2

cases, as discussed above, to the E3 case.

Definition2
The cross-product of three vectors x1, x2 and x3 is
defined as:

3333

2222

1111
321

wzyx
wzyx
wzyx
lkji

xxx =××

where: i = [1,0,0:0]T, j = [0,1,0:0]T, k = [0,0,1:0]T,
l = [0,0,0:1]T and xi = [xi, yi, zi: wi]T

Theorem3
Let three points x1, x2, x3 be given in the projective
space. Then a plane ρ∈E3 defined by those three
points is determined as:

ρ = x1 × x2 × x3
Proof3
Let the plane ρ∈E3 be defined as:

aX + bY + cZ + d = 0
or

ax + by + cz + dw = 0
It can be seen that:

333

222

111

wzy
wzy
wzy

a =

 333

222

111

wzx
wzx
wzx

b −=

333

222

111

wyx
wyx
wyx

c =

 333

222

111

zyx
zyx
zyx

d −=

that is the cross-product that defines a plane ρ if
three points are given and therefore:

ρ = x1 × x2 × x3

Note: The proof of the standard formula, i.e. for the
case w = 1, is left to a reader.

WSEAS TRANSACTIONS on COMPUTERS Vaclav Skala

E-ISSN: 2224-2872 282 Issue 9, Volume 11, September 2012

As a point is dual to a plane, a plane is dual to a
point we can use the principle of duality directly,
now.

Theorem4
Let three planes ρ1, ρ2 and ρ3 be given in the
projective space. Then a point x, which is defined as
the intersection point of those three planes, is
determined as:

x = ρ1 × ρ2 × ρ3
where: x = [x, y, z, w]T

Proof4
This is a direct consequence of the principle of
duality application:

3333

2222

1111
321

dcba
dcba
dcba
lkji

ρρρx =××=

where: x = [x, y, z: w]T and ࣋௜ ൌ ሾܽ௜, ܾ௜, ܿ௜: ݀௜ሿ்

These two theorems are very important as they
enable us to handle some problems defined in the
homogeneous coordinates efficiently and make
computations quite efficient. Even more, if an input
is in the Euclidean or the homogeneous coordinates
and output can be in the homogeneous coordinates,
no division is needed. In the case of two parallel
lines, the homogeneous coordinate w=0. It means
that we have robust computation of an intersection
point.

The direct impact of these two theorems is that it
is very easy to compute a plane in the E3 given by
three points in the E3 and compute an intersection
point determined as an intersection of three planes
in the E3 and only implementation of one routine is
needed. Of course, there is a question, how to
handle lines in the E3 or P3 cases.

The above mentioned formulae using the
projective notattion are not well known in general
and the authors present explicit formulae for the
Euclidean coordinates, i.e. for w = 1.

4.2.3 Line in E3 defined parametrically
Let us consider a little bit more difficult problems
formulated as follows:

• determine a line q∈E3 if given by two
points xi ,

• determine a line q∈E3 if given by two
planes ρi .

if the parametric form is required.
These problem formulations seem to be trivial

problems if wi = 1 or the division operations are
permitted. In the case of wi ≠ 1 situation is more
complicated as the points can be converted from the
projective space to the Euclidean space using a 3
division operations per a point, i.e.

2 points × 3 divisions = 6 divisions
However this is not necessarily needed in many
algorithms actually as we need only ordering
information, i.e. if the nearest intersection of a line
and several planes is computed. It means that we
need the order of intersection. In this case we can
use a linear interpolation with non-linear
monotonical parameterization. Let us imagine two
points

x1 = [x1, y1, z1: w1]T x2 = [x2, y2, z2: w2]T

Then the line in a parametric form can be defined as

x(t) = x1 +(x2 - x1) t = x1 + s t

where the vector s is computed as a difference in the
projective space, i.e. without transformation to the
Euclidean space. Nevertheless monotonic
parameterization is required in many applications
and points are given in the projective space.

Let us consider a two points given in the
homogeneous coordinates.

On the other hand, a classic rule for robustness is
to “postpone division operation to the last moment
possible”. Even if division is permitted, the 2nd case
seems to be more difficult not only from the
robustness point of view as the line is considered as
an intersection of two planes, i.e. a common
solution of their implicit equations.

We will derive a new method for the
computation of a line in the E3 for those two
possible cases without use of division directly in the
projective space.

The Plücker coordinates will be used as they can
help us to formalize and resolve this problem
efficiently.

4.3 Plücker Coordinates
The formulae presented above enable us to handle
points and planes in E3. Nevertheless, it is necessary
to handle lines in the E3 in the parametric form
using the homogeneous coordinates as well and
avoid the division operations, too.

A parametric form for a line given by two points
in the Euclidean space is given as:

WSEAS TRANSACTIONS on COMPUTERS Vaclav Skala

E-ISSN: 2224-2872 283 Issue 9, Volume 11, September 2012

X(t) = X1 + (X2 - X1) t

where: t is a parameter t ∈ (-∞ , ∞).
This is straightforward for the Euclidean

coordinates and for the homogeneous coordinates if
the division operation is permitted. It is necessary to
represent a position and a direction. The question is
how to make it directly in the projective space using
the homogeneous coordinates.

Therefore, in the following the Plücker
coordinates will be introduced to resolve the case.
Another approach using the Grassmann coordinate
system can be found in [6].

Let us consider two points in the homogeneous
coordinates:

x1 = [x1, y1, z: w1]T x2 = [x2, y2, z2: w2]T

The Plücker coordinates lij are defined as follows:
l41 = w1x2 – w2x1 l23 = y1z2 – y2z1
l42 = w1y2 – w2y1 l31 = z1x2 – z2x1
l43 = w1z2 – w2z1 l12 = x1y2 – x2y1

It is possible to express the Plücker coordinates as
)(

1
)(

2
)(

2
)(

1
jiji

ijl xxxx −=

alternatively, as an anti-symmetric matrix L:
TT
1221 xxxxL −=

where: lij = - lji and lii = 0.

Let us define two vectors ω and v as:

ω = [l41 , l42 , l43]T v = [l23 , l31 , l12]T

It means that ω represents the “directional vector”,
while v represents the “positional vector”. It can be
seen that for the Euclidean space (w = 1) we get:

X2 – X1 = ω X1 × X2 = v

where: Xi = [xi, yi, zi]T/wi are points in the Euclidean
coordinates.

For the general case wi ≠ 1 when xi are not ideal
points, i.e. wi ≠ 0 we get:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−=−

1

1

2

2

1

1

2

2

1

1

2

2
12 ,,

w
z

w
z

w
y

w
y

w
x

w
xXX

It can be seen that for the projective space, vectors
ω and v can be expressed as:

()
()

()434241

211221122112

1212

,,
,,

lll
wzwzwywywxwx

ww

=
−−−

=−= XXω

and

()
()
()123123

122112211221

2112

,,
,,

lll
yxyxxzxzzyzy

ww
=−−−

=×= XXv

The equations above show the relation between
vectors ω and v and the Plücker coordinates lij. In
1871 Klein derived that ωT v = 0 [12], i.e. in the
Plücker coordinates:

l23* l41 + l31 * l42 + l12 * l43 = 0

This is a homogeneous equation of degree 2 and
therefore the solution lies on a 4-dimensional
quadratic hyper-surface. If q is a point on a line
q(t) = q1 + ω t given by the Plücker coordinates, it
must satisfy equation:

vqω =×

Let X2 – X1 = ω and X1 × X2 = v. A point on the line
q(t) = q1 + ω t is defined as:

() tt ω
ω
ω vq +

×
= 2

Please, see Appendix C for derivation of this
formula. It should be noted that for t = 0 we do not

get the point X1. If
0=ω the given points are equal.

The equation defines a line q(t) in the E3 by two
points x1 and x2 given in the homogeneous
coordinates. Of course, we can avoid the division
operation easily using homogeneous notation for
a scalar value ()tq) , as follows:

()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +×
= 2

2

ω

ωωω t
t

v
q)

and the resulting line is defined directly in the
projective space P3.

Let us imagine that we have to solve the second
problem, i.e. a line defined as an intersection of two
given planes ρ1 and ρ2 in the Euclidean space:

ρ1 = [a1, b1, c1, d1]T ρ2 = [a2, b2, c2, d2]T

It is well known that the directional vector s of the
line is given by those two planes as a ratio:

22

11

22

11

22

11 ::::
ba
ba

ac
ac

cb
cb

sss zyx =

that is actually the ratio l23 : l31 : l12 if the principle
of duality is used, i.e. vector of [ai, bi, ci, di]T

WSEAS TRANSACTIONS on COMPUTERS Vaclav Skala

E-ISSN: 2224-2872 284 Issue 9, Volume 11, September 2012

 instead of [xi, yi, zi, wi]T is used, and it defines the
vector v instead of ω.

Now we can apply the principle of duality as we
can interchange the terms “point” and “plane” and
exchange v and ω in the Eq.34 and we get:

() tt v
v

v ωq +
×

= 2

and similarly to the Eq.35, the formula for the line
in the homogeneous coordinates is given as:

()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +×
= 2

2

v
vvv ω

q
t

t)

If 0=v then the given planes are parallel.

It means that we have obtained the known formula
for an intersection of two planes ρ1, ρ2 in the
Euclidean coordinates, see [7]:

() tt 30 nqq +=
where: 213 nnn ×= , q0 = [X0, Y0, Z0]T and planes

0: 111 =+ dT xnρ 0: 222 =+ dT xnρ
The intersection point X0 of three planes in the
Euclidean coordinates is defined as:

଴ݔ ൌ
݀ଶ ฬܾଵ ܿଵ

ܾଷ ܿଷ
ฬ െ ݀ଵ ฬܾଶ ܿଶ

ܾଷ ܿଷ
ฬ

ܶܧܦ

଴ݕ ൌ
݀ଶ ቚ

ܽଷ ܿଷ
ܽଵ ܿଵ

ቚ െ ݀ଵ ቚ
ܽଷ ܿଷ
ܽଶ ܿଶ

ቚ

ܶܧܦ

଴ݖ ൌ
݀ଶ ฬܽଵ ܾଵ

ܽଷ ܾଷ
ฬ െ ݀ଵ ฬܽଶ ܾଶ

ܽଷ ܾଷ
ฬ

ܶܧܦ

ܶܧܦ ൌ อ
ܽଵ ܾଵ ܿଵ
ܽଶ ܾଶ ܿଶ
ܽଷ ܾଷ ܿଷ

อ

If a line is defined by two points and 1=ω , i.e. the
directional vector is normalized, we get the standard
formula and the line is simply determined as:

() tt ωω vq +×=

As a point is dual to a plane we can directly write an
equation for an intersection of two lines.

In the case of a line defined by two planes and
1=v , i.e. the positional vector is normalized, we

get the line simply determined as:

() tt vvω q +×=

Those formulae are well known if the Euclidean
coordinates are used.

Note:
It is possible to define vectors v and ω for the

plane intersection case as v = [l41, l42, l43]T and
ω = [l23, l31, l12]T, i.e. with swapped Plücker vectors,
and have the same equation for the line q(t) but the
symbols would have different interpretation – that is
the reason, why the priority was given to different
notation for those two cases.

However, an intersection of two planes is the
case very often solved in computer graphics and
vision. Unfortunately in many cases available
solutions are not robust or formula are neither
simple, like above, nor convenient for GPU use.

In the following a new formulation of two plane
intersection is presented and if the projective space
is used for formulation, the solution is quite simple.

Figure 6. Intersection of two planes

If the projective space is used, the solution is quite
simple. Let us consider two planes ࣋ଵ and ࣋ଵ given
as

ଵ࣋ ൌ ሾܽଵ, ܾଵ, ܿଵ: ݀ଵሿ் ࣋ଶ ൌ ሾܽଶ, ܾଶ, ܿଶ: ݀ଶሿ்
It means that normal vectors of those planes are

ଵ࢔ ൌ ሾܽଵ, ܾଵ, ܿଵሿ் ࢔ଶ ൌ ሾܽଶ, ܾଶ, ܿଶሿ்
It is obvious that a directional vector of a line is
determined as an intersection of two planes ࣋ଵ and
 ଵ given as࣋

࢙ ൌ ଵ࢔ ൈ ଶ࢔
However, the “starting” point ࢞଴ of the line is
determined in quite complicated ways, sometimes
even not robustly enough and based on a user choice
of some value, or proposes solution of a system of
linear equations leading to a standard formula given
above.

The formula is quite “horrible” one and for
students not acceptable as it is too complex and they
do not see from the formula comes from.

However, there is a quite simple geometrical
explanation and solution. So the first question is

WSEAS TRANSACTIONS on COMPUTERS Vaclav Skala

E-ISSN: 2224-2872 285 Issue 9, Volume 11, September 2012

how to find the “starting” point ࢞଴ of the line ࢖
given by two planes ࣋ଵ and ࣋ଶ. If a robust solution
is required a user should be prevented from a
selection of some “parameters”.

Let us imagine that there exists a plane ࣋଴,
whose normal vector is given as ࢙ ൌ ଵ࢔ ൈ ଶ. It࢔
means that its position needs to be “fixed” in the
space. As there is no other requirement on this
plane, we can “fix” it so it passes through the origin
of the coordinate system, i.e. the plane ࣋଴ is given
as

଴࣋ ൌ ሾܽ଴, ܾ଴, ܿ଴: 0ሿ்

and the line ࢖ is orthogonal to the plane ࣋଴ –
resulting into a robust geometric position.

Now, the intersection point of those three planes
is the point ࢞଴ we are looking for. Coordinates of
the point ࢞଴ are determined by generalized cross-
product as

଴࢞ ൌ ଵ࣋ ൈ ଶ࣋ ൈ ଴࣋

It is obvious that the point ࢞଴ is also the closest
point on the line to the origin, too. As this formula is
very compact and it is suitable for GPU application.
Appendix A presents the extended cross-product
GPU implementation.

From the formulation presented above, it can be
seen that it is not only very simple, easy to
understand and remember, but also easy to
implement as well. As a result, the Plücker
coordinates formulation of this problem solution is
not needed when looking for such properties.

4.2.1 Geometric Transformations with Duals
Geometric transformations in computer graphics
and computer vision are mostly based on
transformations of points. Nevertheless in many
cases we have a line given by two points in E2 or a
plane given by three points in E3. The question is
how the line or the plane will change if a geometric
transformation is applied on those points.

We need to determine a transformation matrix
 for a transformed line p’, if geometric ࡽ
transformation ࢀ is applied on points defining the
line p without a need to re-compute the coefficients
of the line from the transformed points.

ᇱ࢖ ൌ ଵ࢞ሺࡽ ൈ ଶሻ࢞ ൌ ሺ࢞ࢀଵሻ ൈ ሺ࢞ࢀଶሻ

ൌ
ሺିࢀଵሻ்ሺ࢞ଵ ൈ ଶሻ࢞

ሻࢀሺݐ݁݀

it means that ࡽ ൌ ሺିࢀଵሻ்/݀݁ݐሺࢀሻ .

For the standard geometric transformations
rotation and translation detሺࢀሻ ൌ 1 the matrix ࡽ is

simple. Nevertheless the matrix ࡽ can be
determined for a general transformation. It should
be noted that e.g. a rotation can be “rewritten” in the
projective notation as

ᇱ࢞ ൌ ࢞ ሺ߮ሻࡾ ൌ ൥
cosሺ߮ሻ െ sinሺ߮ሻ 0
sinሺ߮ሻ cosሺ߮ሻ 0

0 0 1
൩ ࢞

ᇱ࢞ ൌ ࢞ Ԣሺ߮ሻࡾ ൌ෥ ൥
ܽ െܾ 0
ܾ ܽ 0
0 0 ܿ

൩

where: cosሺ߮ሻ ൌ ܽ/ܿ and sinሺ߮ሻ ൌ ܾ/ܿ . In this
case detሺࢀሻ ് 1 of course. As the specification is in
the projective space, we can use ࡽ ൌ ሺିࢀଵሻ் for
line and plane transformations and save the division
operation.

It can be seen that for the case of E3 a similar
approach can be taken as well.

As a result of this approach is that we can easily
solve a problem: Given a line p and a geometric
transformation T in the projective space. How the
coefficients of a line are changed? Similarly for a
plane in E3 and dual problems a solution is simple.

5 Barycentric coordinates
Barycentric coordinates are very often used in
computer graphics. Usually a system of linear
equations has to be solved. If the points forming a
simplex are given in the projective space, solution
requires use of division operation. However the
barycentric coordinates can be solved without
division operation if projective space and
generalized cross-product are used.

5.1 Euclidean Barycentric Coordinates

In computer graphics Euclidean or homogeneous
coordinates are widely used as well as parametric
formulations, e.g. triangles, parametric patches etc.
The barycentric coordinates have many useful and
interesting properties [24].

P1

x1

x

x3

P3

x2

P2

Barycentric coordinates in E2

Figure 7

WSEAS TRANSACTIONS on COMPUTERS Vaclav Skala

E-ISSN: 2224-2872 286 Issue 9, Volume 11, September 2012

Let us consider a triangle with vertices X1, X2, X3,
see Fig.7. The position of any point X∈E2 can be
expressed as

1 1 2 2 3 3a X a X a X X+ + =
1 1 2 2 3 3a Y a Y a Y Y+ + =

If we add an additional condition
1 2 3 1a a a+ + =

we get a system of linear equations. The
coefficients ai are called barycentric coordinates of
the point X. The point X is inside the triangle if and
only if 0 1ia≤ ≤ , i = 1,…,3. It is useful to know that

i = 1,...,3i
i

P
a

P
=

where: P is the area of the given triangle and iP is
the area of the i-th subtriangle.

Note: The barycentric coordinates can easily be
converted into the usual parametric form. It can be
seen that 1 2 31a a a= − − . Substituting this we obtain

()2 3 1 2 2 3 31 a a X a X a X X− − + + =
i.e.

() ()1 2 2 1 3 3 1X a X X a X X X+ − + − =
and finally we get

() ()2 2 1 3 3 1 1a X X a X X X X− + − = −
It is the standard formula usually used. Similarly, it
may be used for other coordinates.

Now a system of linear equations has to be solved,
i.e.

=Aα β

where: 1 2 3, , Ta a a= ⎡ ⎤⎣ ⎦α , [], ,1 TX Y=β and
1 2 3

1 2 3

1 1 1

X X X
Y Y Y
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A

and division operations must be used to solve this
linear system of equations. In some cases, especially
when the triangles are very thin, there might be a
severe problem with the stability of the solution.

The non-homogeneous system of linear
equations =Aα β can be transformed into a
homogeneous linear system

1 1 2 2 3 3 4 0b X b X b X b X+ + + =
1 1 2 2 3 3 4 0b Y b Y b Y b Y+ + + =
1 2 3 4 0b b b b+ + + =

where: 4 0b ≠ and 4 1,...,3i ib a b i= − = .
Rewriting this system in a matrix form, we get

1
1 2 3

2
1 2 3

3

4
1 1 1 1

b
X X X X

b
Y Y Y Y

b
b

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

0

or in the matrix form

=B b 0 or [][]| =A X b 0

where: 1 2 3 4, , , Tb b b b= ⎡ ⎤⎣ ⎦b , [], ,1 TX Y=X ,

1 2 3

1 2 3

1 1 1

X X X
Y Y Y
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A

 and []|=B A X
In another way, we are looking for a vector τ , see
eq.4, that satisfies the condition

0T =τ b

where: 1 2 3 4, , , Tτ τ τ τ= ⎡ ⎤⎣ ⎦τ
This equation can be expressed using the
determinant form as:

1 2 3 4

1 2 3

1 2 3
det 0

1 1 1 1

X X X X
Y Y Y Y

τ τ τ τ

=

It is obvious that it can be formally written as:

× ×=b ξ η w

where: 1 2 3 4, , , Tb b b b= ⎡ ⎤⎣ ⎦b 1 2 3, , , TX X X X= ⎡ ⎤⎣ ⎦ξ

1 2 3, , , TY Y Y Y= ⎡ ⎤⎣ ⎦η []1,1,1,1 T=w
and the barycentric coordinates of the point X are

given as
1

1
4

b
a

b
= −

,
2

2
4

b
a

b
= −

,
3

3
4

b
a

b
= −

We can use the Plücker coordinates notation and

write
()4: 1,...,3i ia b b i= − = .

If 4 0b = , the triangle is degenerated to a line
segment or to a point, i.e. it is a singular case, which
can be correctly detected.

The given point X is inside the given triangle if
and only if 0 1ia≤ ≤ , i = 1,…,3. This condition is
a little bit more complicated for the homogeneous
representation and can be expressed by a sequence

if 4 0b > then 40 ib b≤ − ≤
 else 4 0ib b≤ − ≤ 1,...,3i =
This is a very important result as it means that we
do not need the division operation for testing
whether the given point X is inside the given
triangle!

WSEAS TRANSACTIONS on COMPUTERS Vaclav Skala

E-ISSN: 2224-2872 287 Issue 9, Volume 11, September 2012

In many applications, the vertices of the given
triangle and the given point X can be given in
homogeneous coordinates. Let us explore how the
barycentric coordinates could be computed in this
case.

The linear system of equations for the
barycentric coordinates can be rewritten as:

31 2
1 2 3

1 2 3

xx x x
a a a

w w w w
+ + =

31 2

1 2 3
1 2 3

yy y y
a a a

w w w w
+ + =

1 2 3 1a a a+ + =

where: , : T
i i i ix y w= ⎡ ⎤⎣ ⎦x represents the i-th vertex

triangle in the homogeneous coordinates and
[], , Tx y w=x is the given point in the homogeneous

coordinates.
We can multiply the linear system by 0w ≠ ,

0 1,...,3iw i≠ = and substitute:
1 1 2 3b a w w w= − 2 2 1 3b a w w w= −
3 3 1 2b a w w w= − 4 1 2 3b w w w w=

Thus we get:
1 1 2 2 3 3 4 0b x b x b x b x+ + + =
1 1 2 2 3 3 4 0b y b y b y b y+ + + =
1 1 2 2 3 3 4 0b w b w b w b w+ + + =

and in the matrix notation:
1

1 2 3
2

1 2 3
3

1 2 3
4

b
x x x x

b
y y y y

b
w w w w

b

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

0

We are looking for a vector τ that satisfies the
following equation:

0T =τ b
where: the vector τ is defined as 1 2 3 4, , : Tτ τ τ τ= ⎡ ⎤⎣ ⎦τ
Then the solution is defined as

1 2 3 4

1 2 3

1 2 3

1 2 3

det 0
x x x x
y y y y
w w w w

τ τ τ τ

=

and we can formally write

× ×=b ξ η w

where: 1 2 3 4, , , Tb b b b= ⎡ ⎤⎣ ⎦b 1 2 3, , , Tx x x x= ⎡ ⎤⎣ ⎦ξ

1 2 3, , , Ty y y y= ⎡ ⎤⎣ ⎦η 1 2 3, , , Tw w w w= ⎡ ⎤⎣ ⎦w

Of course, the conditions in the case that the point is
inside the given triangle are slightly more complex,

and the condition 0 1 1,...,3ia i≤ ≤ = can be
expressed by the following criteria:

()1 2 30 : 1b w w w≤ − ≤
()2 1 30 : 1b w w w≤ − ≤
()3 1 20 : 1b w w w≤ − ≤

This means that the barycentric coordinates can be
computed without using the division operation
even if the vertices of the given triangle and the
point x are given in homogeneous coordinates.
Therefore the approach presented here is more
robust than the direct computation, i.e. normalizing
the vertices and point coordinates into Euclidean
coordinates and standard barycentric coordinates
computation. In addition, the test if a point is inside
the given triangle is consequently more robust.
Of course, there is a natural question: is it possible
to extend the above mentioned approach to the E3
case?

Let us consider the E3 case, where the “point in a
tetrahedron” test is similar to the “point in a
triangle” test in E2, see Fig.7.

x1

x

x3

x4

x2

V3

Barycentric coordinates in E3

Figure 7

It can be seen that the barycentric coordinates are
given as

1 1 2 2 3 3 4 4a X a X a X a X X+ + + =
1 1 2 2 3 3 4 4a Y a Y a Y a Y Y+ + + =
1 1 2 2 3 3 4 4a Z a Z a Z a Z Z+ + + =
1 2 3 4 1a a a a+ + + =

It is useful to know that

i = 1,...,3i
i

V
a

V
=

where: V is the volume of the given tetrahedron and
iV is the volume of the i-th sub-tetrahedron.

The non-homogeneous system of linear equations
can be transformed into a homogeneous linear
system of equations

WSEAS TRANSACTIONS on COMPUTERS Vaclav Skala

E-ISSN: 2224-2872 288 Issue 9, Volume 11, September 2012

1 1 2 2 3 3 4 4 5 0b X b X b X b X b X+ + + + =
1 1 2 2 3 3 4 4 5 0b Y b Y b Y b Y b Y+ + + + =
1 1 2 2 3 3 4 4 5 0b Z b Z b Z b Z b Z+ + + + =
1 2 3 4 5 0b b b b b+ + + + =

where: 5 0b ≠ and 5 1,..., 4i ib a b i= − =
Rewriting this system in matrix form, we get

1
1 2 3 4

2
1 2 3 4

3
1 2 3 4

4

5
1 1 1 1 1

b
X X X X X

b
Y Y Y Y Y

b
Z Z Z Z Z

b
b

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

0

i.e.

=B b 0 or [][]| =A X b 0
where: 1 2 3 4 5, , , : Tb b b b b= ⎡ ⎤⎣ ⎦b , [], , :1 TX Y Z=X ,

1 2 3 4

1 2 3 4

1 2 3 4

1 1 1 1

X X X X
Y Y Y Y
Z Z Z Z

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A

 and []|=B A X
Again, we are looking for a vector τ that satisfies
the equation

0T =τ b
where: 1 2 3 4 5, , , : Tτ τ τ τ τ= ⎡ ⎤⎣ ⎦τ
The equation can be expressed using a determinant
form as:

1 2 3 4 5

1 2 3 4

1 2 3 4

1 2 3 4

det 0

1 1 1 1 1

X X X X X
Y Y Y Y Y
Z Z Z Z Z

τ τ τ τ τ

=

It can be seen that we can formally write again:

× × ×=b ξ η ζ w
where: 1 2 3 4 5, , , : Tb b b b b= ⎡ ⎤⎣ ⎦b 1 2 3 4, , , : TX X X X X= ⎡ ⎤⎣ ⎦ξ

1 2 3 4, , , : TY Y Y Y Y= ⎡ ⎤⎣ ⎦η 1 2 3 4, , , : TZ Z Z Z Z= ⎡ ⎤⎣ ⎦ζ

[]1,1,1,1:1 T=w
This means that the barycentric coordinates of the
point X are given as:

1
1

5

b
a

b
= −

,
2

2
5

b
a

b
= −

,
3

3
5

b
a

b
= −

,
4

4
5

b
a

b
= −

or if we use the Plücker coordinates notation, they
are given as

()5: 1,..., 4i ia b b i= − = .

The given point X is inside the given tetrahedron if
and only if 0 1ia≤ ≤ , i = 1,…,4.
This condition can be expressed by the following
sequence
if 5 0b > then 50 ib b≤ − ≤
 else 5 0ib b≤ − ≤
If 5 0b = , the tetrahedron is degenerated to a triangle
or to a line segment or to a point, i.e. singular cases
that can be correctly detected.
Let us again consider a case when the tetrahedron
vertices and the given point are in homogeneous
coordinates.
The linear system of equations can be rewritten as:

31 2 4
1 2 3 4

1 2 3 4

xx x x x
a a a a

w w w w w
+ + + =

31 2 4

1 2 3 4
1 2 3 4

yy y y y
a a a a

w w w w w
+ + + =

31 2 4

1 2 3 4
1 2 3 4

zz z z z
a a a a

w w w w w
+ + + =

1 2 3 4 1a a a a+ + + =

where: , , : T
i i i i ix y z w= ⎡ ⎤⎣ ⎦x represents the i-th vertex

coordinates in the homogeneous coordinates.
We can multiply the linear system of equations by

0w ≠ , 0 1,..., 4iw i≠ = and substitute
1 1 2 3 4b a w w w w= − 2 2 1 3 4b a w w w w= −
3 3 1 2 4b a w w w w= − 4 4 1 2 3b a w w w w= −
5 1 2 3 4b w w w w=

This results into a standard homogeneous linear
system:

1 1 2 2 3 3 4 4 5 0b x b x b x b x b x+ + + + =
1 1 2 2 3 3 4 4 5 0b y b y b y b y b y+ + + + =
1 1 2 2 3 3 4 4 5 0b z b z b z b z b z+ + + + =
1 1 2 2 3 3 4 4 5 0w b w b w b w b w b+ + + + =

that can be expressed in the matrix form as:
1

1 2 3 4
2

1 2 3 4
3

1 2 3 4
4

1 2 3 4
5

b
x x x x x

b
y y y y y

b
z z z z z

b
w w w w w

b

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

0

We are looking for a vector τ that satisfies the
equation

0T =τ b

where: the vector 1 2 3 4 5, , , : Tτ τ τ τ τ= ⎡ ⎤⎣ ⎦τ is defined as

WSEAS TRANSACTIONS on COMPUTERS Vaclav Skala

E-ISSN: 2224-2872 289 Issue 9, Volume 11, September 2012

1 2 3 4 5

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

det 0
x x x x x
y y y y y
z z z z z
w w w w w

τ τ τ τ τ

=

It can be seen that we can formally write:

× × ×=b ξ η ζ w
where: 1 2 3 4 5, , , : Tb b b b b= ⎡ ⎤⎣ ⎦b 1 2 3 4, , , : Tx x x x x= ⎡ ⎤⎣ ⎦ξ

1 2 3 4, , , : Ty y y y y= ⎡ ⎤⎣ ⎦η 1 2 3 4, , , : Tz z z z z= ⎡ ⎤⎣ ⎦ζ

1 2 3 4, , , : Tw w w w w= ⎡ ⎤⎣ ⎦w

The conditions – if the point is inside the given
triangle – are slightly more complex and the
condition 0 1 1,..., 4ia i≤ ≤ = can be expressed by
the following criteria:

()1 2 3 40 : 1b w w w w≤ − ≤
()2 1 3 40 : 1b w w w w≤ − ≤
()3 1 2 40 : 1b w w w w≤ − ≤
()4 1 2 30 : 1b w w w w≤ − ≤

It is worth noting that the equations for the
computation of barycentric coordinates given above
can be simplified for special cases, e.g. if the
tetrahedron vertices are expressed in the Euclidean
coordinates or the given point x is expressed in the
Euclidean coordinates. Such simplifications will
increase the speed of computation significantly
without compromising the robustness of the
computation. Nevertheless, the resulting barycentric
coordinates are generally in the projective space, i.e.
the homogeneous coordinate is not equal to ‘1’ in
general.

5.2 Dual Barycentric Coordinates
Barycentric coordinates of a point ࢞ ൌ ሾݔ, :ݕ ሿ் inݓ
the triangle given by points ࢞ଵ, ,ଶ࢞ ଷ in E2 can be࢞
computed directly using homogeneous coordinates
as ࢞ ෥ ൈ ෥ ࢟ ൈ ෥࢝ ,
where: ࢞ ෥ ൌ ሾݔଵ, ,ଶݔ ,ଷݔ ෥ ࢟ , ሿ்ݔ ൌ ሾݕଵ, ,ଶݕ ,ଷݕ ,ሿ்ݕ
෥ ࢞ ൌ ሾݓଵ, ,ଶݓ ,ଷݓ ሿ்ݓ

෥ ࢞ ൈ ෥ ࢟ ൈ ෥࢝ ൌ ݐ݁݀ ൮

࢏ ࢐ ࢑ ࢒
ଵݔ ଶݔ ଷݔ ݔ
ଵݕ ଶݕ ଷݕ ݕ
ଵݓ ଶݓ ଷݓ ݓ

൲

ൌ ሾߦଵ ଶߦ ଷߦ ௪ሿ்ߦ
where: ߣ௜ ൌ െ ௜ߦ ⁄௪ߦ , ݅ ൌ 1, … ,3 [24].

The ܲ area of a triangle given by three points in E2
can be easily computed as

ܲ ൌ
1
2

ଵ࢞
். ሺ࢞ଶ ൈ ଷሻ࢞ ሺݓଵݓଶݓଷሻ⁄

ൌ ݐ݁݀ ൭
ଵݔ ଶݔ ଷݔ
ଵݕ ଶݕ ଷݕ
ଵݓ ଶݓ ଷݓ

൱ ሺݓଵݓଶݓଷሻ൘

We can rewrite the result in the projective notation
as “projective” scalar value as:

ܲ ൌ ሾ݀݁ݐ ൭
ଵݔ ଶݔ ଷݔ
ଵݕ ଶݕ ଷݕ
ଵݓ ଶݓ ଷݓ

൱ : ଷሿ்ݓଶݓଵݓ

Similarly a volume of a tetrahedron given by four
points in E3 can be computed as

ܸ ൌ
1
6

ଵ࢞
். ሺ࢞ଶ ൈ ଷ࢞ ൈ ସሻ࢞ ሺݓଵݓଶݓଷݓସሻൗ

It means that the projective formulation is simple
and matrix-vector GPU architecture supports fast
computations without using division operation, as
the result can be represented by homogeneous
coordinates, in general.

As the principle of duality is valid, one could
ask: What is a “dual” value ܩ to a computation of
the area ܲ if the triangle is given by three lines in
the “normalized” form, e.g. ࢇଵ

். ሺࢇଶ ൈ ଷሻ insteadࢇ
of three points?

ܩ ൌ ૚ࢇ
.ࢀ ሺࢇ૛ ൈ ૜ሻࢇ ൌ ݐ݁݀ ൭

ܽଵ ܽଶ ܽଷ
ܾଵ ܾଶ ܾଷ
ܿଵ ܿଶ ܿଷ

൱

ൌ ݐ݁݀ ൭
ଵߙݏ݋ܿ ଶߙݏ݋ܿ ଷߙݏ݋ܿ
ଵߙ݊݅ݏ ଶߙ݊݅ݏ ଷߙ݊݅ݏ

݀ଵ ݀ଶ ݀ଷ

൱

It can be seen that we can apply some
transformations so that one vertex of the given
triangle is in the origin and the line ࢇଵ is on the
axis ݔ, the edge ࢇଶ passes the origin and line ࢇଷ is
in the general position.

ܩ ൌ ሺࢇࢀଵሻ்ሺିࢀଵሻ்ሺࢇଶ ൈ ሻࢀሺݐ݁݀/ଷሻࢇ
ൌ ଵࢇ

ଶࢇଵሻ்ሺିࢀሺ்ࢀ் ൈ ሻࢀሺݐ݁݀/ଷሻࢇ
ൌ ଵࢇ

்ሺࢇଶ ൈ ሻࢀሺݐ݁݀/ଷሻࢇ

As for the “standard” transformations detሺࢀሻ ൌ 1
and we can write:

ܩ ൌ ݐ݁݀ ൭
1 ଶߙݏ݋ܿ ଷߙݏ݋ܿ
0 ଶߙ݊݅ݏ ଷߙ݊݅ݏ
0 0 ݀ଷ

൱ ൌ ݀ଷߙ݊݅ݏଶ

ൌ ݀ଷ. ܽ ሺ2ܴሻ⁄ ൌ ܲ/ܴ

It can be seen that ܩ ൌ ݀ଷߙ݊݅ݏଶ ൌ ܲ/ܴ , where:
a is the length of the line segment on a3 and ܴ is a
radius of the circumscribing circle. It can be seen
that the value ܩ can be used as criterion for a quality
triangular meshes.

WSEAS TRANSACTIONS on COMPUTERS Vaclav Skala

E-ISSN: 2224-2872 290 Issue 9, Volume 11, September 2012

Of course, we have to prove that the proposed
transformation of the given triangle is invariant to
the ܩ value. As ݀݁ݐሺࢀሻ ൌ 1 for translation and
rotation operations, those transformations are
invariant and value ܩ is not changed by those
transformations. The value ܩ has a property of a
distance, i.e. it is in measured in [m], in general.

In geometric modeling a skewnees factor ܵ is
used for quality evaluation of triangular meshes

ܵ ൌ 1 െ ݎ2 ܴ⁄
where ݎ is a radius of the inscribed circle.

It seems to that the value G can be used for an
effective evaluation for quality of triangular meshes
in E2 or tetrahedron meshes in E3.

6 Conclusion
This paper briefly described some problems in
numerical computations, advantages of the
projective space representation use and some well
known disasters caused by impropriate use on
numerical computations. Geometrical applications
and computational methods require robust
algorithms. Some above described principles have
been applied recently, e.g. in clipping algorithms
[23], [34], [39].

The projective space representation and
reformulation of geometrical problems leads to
more robust algorithms and simpler formulations as
shown. The matrix-vector operations lead to more
compact algorithms and due to the today’s hardware
also to computation acceleration, especially if GPU
is used.

7 Acknowledgments
The author would like to express his thanks to MSc.
students and colleagues at the University of West
Bohemia, Plzen and to Dr.Rongjinang Pan,
Shandong University, China for their critical and
constructive comments and suggestions for their
suggestions that helped to improve the manuscript.

This work was supported by the Ministry of
Education – projects No.ME10060 and LH12181.

References:
[1] Cuyt,A., Verdonk,B., Becuwe,S., Kuterna,P.: A

remarkable Example of Catastrophics
Cancellation Unraveled, Computing 66,
pp.309-320, 2011

[2] Fu,H., Mencer,O., Luk,W.: Comparing
Floating-point and Logarithmic Number
Representations for Reconfigurable
Acceleration

[3] Gibson,C.G., Hunt,K.H.: Geometry of Screw
Systems, Mechanical Machine Theory, Vol.12,
pp.1-27, 1992

[4] Hanrahan,P.: Ray-Triangle and Ray-
Quadrirateral Intersections in Homogeneous
Coordinates,
http://graphics.stanford.edu/courses/cs348b-
04/rayhomo.pdf, (unpublished) 1989

[5] Hartley,R, Zisserman,A.: MultiView Geometry
in Computer Vision, Cambridge Univ. Press,
2000.

[6] Hildenbrand,D., Fontijne,D., Perwass,C.,
Dorst,L: Geometric Algebra and its Application
to Computer Graphics, Eurographics 2004
Tutorial, pp.1-49, 2004.

[7] Hill,F.S.: Computer Graphics using OpenGL,
Prentice Hall, pp.827, 2001

[8] Hradek,J., Skala,V.: Hash Function and
Triangular Mesh Reconstruction, Vol.29,
Computers&Geosciences, Pergamon Press,
No.6., pp.741-751, 2003

[9] Chevalley,C.: Fundamental Concepts of
Algebra, Academic Press, pp.201-203, 1956,

[10] Jimenez,J.J., Segura,R.J., Feito,F.R.: Efficient
Collision Detection between 2D Polygons,
Journal of WSCG, Vol.12, No.1-3, 2003

[11] Johnson,M.: Proof by Duality: or the Discovery
of “New” Theorems, Mathematics Today,
December 1996.

[12] Klein,F.: Notiz Betreffend dem Zusammenhang
der Liniengeometrie mit der Mechanik starrer
KÄorper.,Math. Ann. 4 , pp.403- 415, 1871

[13] Leclerc,A.P.: Efficient and Reliable Global
Optimization, PhD Thesis, Ohio State
University, 1992

[14] Lorentzen,L.: Continued Fractions, Atlanties
Studies in Mathematics for Engineering and
Science, World Scientific Publ., 2008

[15] Ma,Y., Soatto,S., Kosecka,J., Sastry,S.S.: An
Invitation to 3D Vision, Springer Verlag, 2004

[16] Matousek,R., Tichy,M., Pohl,Z., Kadlec,J.,
Softley,C., Coleman,N.: Logarithmic Number
System and Floating-point Arithmetic on
FPGA, in Proc. FPL, 2002, pp. 627–636.

[17] Mohr,R., Triggs,B.: Projective Geometry for
Image Analysis, Tutorial notes,
http://www.inrialpes.fr/movi, 1996

[18] Oh,E., Walster,W.G.: Rump’s Example
Revisited, Reliable Computing, Kluwer
Academic Publ., Vol.9., pp.245-248, 2002

WSEAS TRANSACTIONS on COMPUTERS Vaclav Skala

E-ISSN: 2224-2872 291 Issue 9, Volume 11, September 2012

[19] Press,W.H., Teukolsky,S.A., Vetterling,W.T.,
Flannery,B.P.: Numerical recipes in C,
Cambridge University Press, 1999

[20] Rump,S.M.: Realiability in Computing, The
role of Interval Methods in Scientific
Computing, Academic Press, 1988

[21] Skala,V., Kaiser,J., Ondracka,V.: Library for
Computation in the Projective Space, 6th
Int.Conf. Aplimat, Bratislava, pp. 125-130,
2007

[22] Skala,V., Ondracka,V.: A Precision of
Computation in the Projective Space, Recent
Researches in Computer Science, pp.35-40,
15th WSEAS Int.Conference on Computers,
Corfu, Greece, 2011

[23] Skala,V.: A New Line Clipping Algorithm with
Hardware Acceleration, CGI’2004 conference
proceedings, IEEE, Greece, 2004

[24] Skala,V.: Barycentric Coordinates Computation
in Homogeneous Coordinates, Computers &
Graphics, Elsevier, Vol. 32, No.1, pp.120-127,
2008

[25] Skala,V.: Computation in Projective Space,
MAMECTIS conference, La Laguna, Spain,
WSEAS, pp.152-157, 2009

[26] Skala,V.: Duality and Intersection Computation
in Projective Space with GPU support, Applied
Mathematics, Simulation and Modeling - ASM
2010 conference, NAUN, Corfu, Greece,
pp.66-71, 2010

[27] Skala,V.: Geometric Computation, Duality and
Projective Space, ICGG 2010 conference,
pp.363-364, Kyoto, Japan, 2010

[28] Skala,V.: Geometric Computation, Duality and
Projective Space, IW-LGK workshop
proceedings, pp.105-111, Dresden University
of Technology, 2011

[29] Skala,V.: Intersection Computation in
Projective Space using Homogeneous
Coordinates, Int.Journal on Image and
Graphics, Vol.8, No.4, pp.615-628, 2008

[30] Skala,V.: Length, Area and Volume
Computation in Homogeneous Coordinates,
International Journal of Image and Graphics,
Vol.6., No.4, pp.625-639, 2006.

[31] Skala,V.: Mathematical Foundations for
Computer Graphics and Computer Vision,
Tutorial CGI 2008 conference, Istanbul,
Turkey, 2008.

[32] Skala,V.: Mathematical Foundations for
Computer Graphics and Virtual Reality,
Tutorial Intuition 2008 conference, Torino,
Italy, 2008.

[33] Skala,V.: Mathematical Foundations for
Computer Graphics and Vision and
Computations in Projective Spaces, Tutorial
3DTV conference, 2007.

[34] Skala,V: A new Approach to Line and Line
Segment Clipping in Homogenenous
Coordinates, The Visual Computer, Vol.21,
No.11, pp.905-914, 2005

[35] Skala,V: Duality and Intersection Computation
in Projective Space with GPU Support,
WSEAS Trans.on Mathematics, Vol.9., No.6.,
pp.407-416, 2010

[36] Skala,V.: Fast Information Retrieval for
Textual and Geometrical Applications, 16th
WSEAS Conf.on Computers, Kos, accepted for
publication, WSEAS, Greece, 2012

[37] Skala,V., Hradek,J., Kuchar,M.: New Hash
Fuction Construction for Textual and
Geometrical Data Retrieval, Latest Trends on
Computers, CSCC conference, Corfu, Vol.2,
pp.483-489, Greece, 2010

[38] Stolfi,J.: Oriented Projective Geometry,
Academic Press, 2001.

[39] Thomas,F., Torras,C.: A Projective invariant
intersection test for polyhedra, The Visual
Computer, Vol.18, No.1, pp.405-414, 2002

[40] Vince,J.: Geometry for Computer Graphics,
Springer Verlag, 2004

[41] Yamaguchi,F., Niizeki,M.: Some basic
geometric test conditions in terms of Plücker
coordinates and Plücker coefficients, The
Visual Computer, Vol.13, pp.29-41, 1997

[42] Yamaguchi,F.: Computer-Aided geometric
Design – A Totally Four Dimensional
Approach, Springer Verlag, 1996

[43] Zapletal,J., Vanecek,P., Skala,V.: RBF-based
Image Restoration Utilising Auxiliary Points,
CGI 2009 proceedings, pp.39-44, 2009

WEB resources

[44] Ackermann function,
http://en.wikipedia.org/wiki/Ackermann_functi
on, <retrieved 2012-02-23>

[45] Ariane 501 report
http://www.esa.int/esaCP/Pr_33_1996_p_EN.ht
ml <retrieved 2012-02-02>

[46] Arnold,D.A.: The sinking of the Sleipner A
offshore Platform
http://www.ima.umn.edu/~arnold/disasters/slei
pner.html <retrieved 2012-02-02>

[47] Arnold,D.A.: Two disasters caused by
computer arithemtic error,

WSEAS TRANSACTIONS on COMPUTERS Vaclav Skala

E-ISSN: 2224-2872 292 Issue 9, Volume 11, September 2012

http://www.ima.umn.edu/~arnold/455.f96/disas
ters.html <retrieved 2012-02-02>

[48] Continuous Fractions
http://www.numericana.com/answer/fractions.h
tm <retrieved 2012-01-29>

[49] IEEE-754 Data Format,
http://en.wikipedia.org/wiki/IEEE_754-2008
<retrieved 2012-01-29>

[50] Patriot Missile Defense: Software Problem Led
to System Failure at Hhara, Saudi Arabia,
GAO/IMTEC-92-26 Report, House of
Representatives , USA, 2009
http://www.gao.gov/assets/220/215614.pdf
<retrieved 2012-01-29>

[51] SINTEF, http://www.sintef.no/
<retrieved 2012-02-23>

[52] Tucker,W.: Automatic Differentiation,
http://www.sintef.no/project/eVITAmeeting/20
10/vn2010.pdf <retrieved 2012-01-29>

[53] Materials Digital Library Pathway - MATDL,
http://matdl.org/failurecases/Main_Page,
<retrieved 2012-02-23>

Appendix A

The cross product in 4D is defined as

3333

2222

1111
321 det

wzyx
wzyx
wzyx
lkji

xxx =××

and can be implemented in Cg/HLSL on a GPU as
follows:

float4 cross_4D(float4 x1, float4 x2, float4 x3)
{ float4 a;
a.x = dot(x1.yzw, cross(x2.yzw, x3.yzw));
a.y = ‐ dot(x1.xzw, cross(x2.xzw, x3.xzw));
a.z = dot(x1.xyw, cross(x2.xyw, x3.xyw));
a.w = ‐ dot(x1.xyz, cross(x2.xyz, x3.xyz));
return a;

}
or more compactly

float4 cross_4D(float4 x1, float4 x2, float4 x3)
{
return (
 dot(x1.yzw, cross(x2.yzw, x3.yzw)),
‐ dot(x1.xzw, cross(x2.xzw, x3.xzw)),
 dot(x1.xyw, cross(x2.xyw, x3.xyw)),
‐ dot(x1.xyz, cross(x2.xyz, x3.xyz)));
}

WSEAS TRANSACTIONS on COMPUTERS Vaclav Skala

E-ISSN: 2224-2872 293 Issue 9, Volume 11, September 2012

