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Abstract: - Robustness of computations in engineering is one of key issues as it is necessary to solve technical 
problems leading to ill conditioned solutions. Therefore the robustness and numerical stability is becoming a 
key issue more important that the computational time. In this paper we will show selected computational issues 
in numerical precision, well known cases of failures in computations. The Euclidean representation is used in 
today’s computations, however the projective space (an extension of the Euclidean space) representation leads 
to more compact and robust formulations and to matrix-vector operations supported in hardware, e.g. by GPU. 
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1 Introduction 

Data processing is one of the main fields in 
computer science. Data processing itself can be split 
to two main areas: 

• processing of textual data 
• processing of numerical data 

Nowadays, computers use binary system for 
information and data representation. We use octal or 
hexadecimal representation for data representation. 
If we would be direct descendants of tetrapods we 
would have a great advantage as they had 8 fingers 
on a hand, see Fig.1. However, we have 5 fingers at 
a hand and use a decimal numeral system and for 
computation we use numbers with a decimal point, 
rational and irrational ones. 

The above mentioned main two areas are quite 
different, but have many common algorithms, e.g. 
hashing. In the case of textual data we have 
“unlimited” dimensionality (”unlimited” length of a 
string) but limited interval of values (usually given 
by a number of symbols in the given alphabet). On 
the contrary in the case of numerical or geometrical 
data we have a limited dimensionality (usually 2 or 
3 in the case of E2 or E3) but “unlimited” interval of 
values (usually (-∞, ∞)). In the case of hashing 
techniques it lead us to a “unified” approach of 
hashing, but different construction and specification 
of the hash function used [8], [36], [37].  

 

 

 Name Base Digits E min E max
BINARY 

B 16 Half 2 10+1 −14 15 
B 32 Single 2 23+1 −126 127 
B 64 Double 2 52+1 −1022 1023 
B 128 Quad 2 112+1 −16382 16383

DECIMAL 
D 32 10 7 −95 96 
D 64 10 16 −383 384 
D 128 10 34 −6143 6144 

IEEE 758-2008 standard 
Table 1 

 

 
Figure 1 
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Numerical data processing and numerical 
computations bring quite significant difficulties due 
to the limited precision of a real number 
representation as the floating point representation 
offers only a limited length of a mantissa and 
exponent. The standard IEEE754 specification 
offers the following formats, see Tab.1. It should be 
noted however that not all the modes are supported 
in many cases on different CPUs. Today’s 
programming standard languages do not offer 
constructions for computation with an “arbitrarily” 
long integers or “unlimited” mantissa length 
(Algol 68 had a construction long that could extend 
the basic data type, e.g. long ....... long real etc.). 
Unfortunately it leads to numerical problems and 
possibly to disasters in engineering applications. 
There are also problems connected to uncontrolled 
overflow, infinities and NaN results [49].  

There are several attempts, like logarithmic 
number representation [16] or continued fraction 
computation [2], [14]. However those approaches do 
not solve the principal problem as well.  

It should be noted that the majority of computer 
science students are NOT AWARE of those aspects 
at all.  
 
 
2 Numerical Precision and Robustness 
Numerical data processing and numerical 
computation is the heart of nearly all engineering 
problems solution. On the other hand it seems to 
that in the engineering courses there is no attention 
given to the numerical precision in connection with 
the robustness of algorithms. 

From the floating point representation it can be 
seen that the absolute precision depends on the 
actual exponent significantly, as the precision is 
given by the length of the mantissa multiplied by 
the exponent. As the mantissa is of the given 
length, not all numbers even rational numbers can 
be represented in a computer; of course irrational 
numbers cannot be stored in any case. It means that 
a value x is somehow modified in order to fit into 
the actual floating point representation. It means that 
a stored value x represents actually an interval [a, b], 
i.e. any value from this interval is represented in a 
memory as one value x. 

As values are used in numerical operations it is 
necessary to ask, at least in the case of basic 
arithmetic operations, what is the influence to the 
precision?  

Let as assume that we have two numbers x and y 
x = [a,b], y = [c,d].  

The following interpretation of the basic 
arithmetic operations demonstrate how actual 
precision is defined. 
• x + y = [a + c, b + d] 
• x - y = [a - d, b - c] 
• x × y = [min(ac, ad, bc, bd),  

max(ac, ad, bc, bd)] 
• x / y = [min(a/c, a/d, b/c, b/d),  

max(a/c, a/d, b/c, b/d)]  if y ≠ 0 
There are well known identities like  

ߙଶݏ݋ܿ  ൅ ߚଶݏ݋ܿ ൌ 1 
and 

xଶ െ yଶ ൌ ሺݔ െ ݔሻሺݕ ൅   ሻݕ
However these identities are not valid if the floating 
point representation is used. For a computation of 
xଶ െ yଶ it is better to use ሺݔ െ ݔሻሺݕ ൅  ሻ  due toݕ
better precision in evaluation, as if  |ݔ| ൐  then |ݕ|
ଶݔ ب  ଶݕ ଶ and therefore some last digits of theݕ
mantissa might be lost in the final subtraction. 

Actually all statements like  
• if <float> = <float> then …. 
• if <float> ≠ <float> then …. 

should not be allowed in programming languages or 
at least a warning message should be generated. 
Usually this problem is “solved” by constructions 

if abs (x - y) < epsilon then …      or    
if abs (x) < epsilon then q:= y / x else ERROR  , 

but nobody knows what is the proper value of 
epsilon. 

Let us explore a little bit the numerical problems 
on very simple examples, now. 
 
2.1 Quadratic Equation Solution 
The quadratic equation is well known and used it is 
a part of many engineering problems solutions. Let 
us consider two formulations as follows [19]: 

ଶݐܽ ൅ ݐܾ ൅ ܿ ൌ 0   resp. 2ݐ ൅ ݐ݌ ൅ ݍ ൌ 0 

The solution usually used is  

ଵ,ଶݐ ൌ
െܾ േ √ܾଶ െ 4ܽܿ

2ܽ  
resp. 

ଵ,ଶݐ ൌ
െ݌ േ ඥ݌ଶ െ ݍ4

2  

or if substitute ݐ ൌ 1 ߬ൗ  

߬ଵ,ଶ ൌ
2ܿ

െܾ േ √ܾଶ െ 4ܽܿ
 

However in some cases the “standard” formula can 
lead to incorrect results due to a limited number 
precision. If ܾଶ ب 4ܽܿ then it is recommended to 
use the following formula 
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ݍ ൌ െሺܾ ൅ ሺܾሻඥܾଶ݊݃݅ݏ െ 4ܽܿ ሻ/2 
ଵݐ ൌ ݍ

ܽൗ ଶݐ           ൌ ܿ⁄ܽ  
to get more reliable results.  

It can be seen that even such a simple case might 
be quite sensitive to the numerical precision.  
 
2.2 Function Value Computation 
Computation of a function value is one of the basic 
common operations in engineering problems. 
However many programmers are not aware of the 
danger in the coding process. There seems to be two 
the most dangerous cases: 

• division by a value close to zero, e.g. in an 
intersection computation of two nearly 
parallel lines 

• addition or subtraction of two values with 
significantly different absolute value, e.g. 
recently mentioned xଶ േ yଶ . 

As the result of this, the summation (repeated 
addition) result depends on the order of summation 
in general.  

Let us explore one very interesting case [20] and 
some other interesting comments [1], [13], [18]. 
݂ሺݔ, ሻݕ ൌ ଺ݕ333.75

൅ ଶݕଶݔଶሺ11ݔ െ ଺ݕ െ ସݕ121 െ 2ሻ
൅ ଼ݕ5.5 ൅  ሻݕሺ2/ݔ

The question is, what is the value of the function if 
it is evaluated at  ݔ ൌ ݕ  ,77617 ൌ 33096 if 
different floating point precision is used. 
݂ ൌ 6.33835 10ଶଽ    in single precision 
݂ ൌ 1,1726039400532   in double precision 
݂ ൌ 1,1726039400531786318588349045201838 
             in extended precision  
However even the result in the extended precision is 
incorrect and even the sign itself is incorrect. The 
correct! The correct result is “somewhere” in the 
interval of 
ሾെ0,827396059946821368141165095479816 
                                                                                29૛૙૙૞, 
െ0,827396059946821368141165095479816 
                                                                                29૚ૢૡ૟ሿ  
if approx. 40 digits were used [13]. Of course this 
function is constructed in a special way, but it 
demonstrate that 

• simple increase of precision does not 
guarantee the correctness of the result 

• roundoff error has significant influence to 
for a limited floating point computation. 

Detailed analysis of this function can be found in [1] 
and the correct result is 

݂ሺݔ, ሻݕ ൌ െ2 ൅
ݔ

ݕ2
ൌ

54767
66192

 

Unfortunately precision of the numerical results are 
significantly influenced by compilers properties and 
options used, as the optimization of the code is not 
considering the numerical stability issues. 
 
2.3 Addition and Computational Order 
So far we have dealt with “complicated cases”, 
usually seen as “not practical”. Power series 
summation is one of the very practical and often 
used computations. Let us imagine simple examples 
of summation if single precision is used [52]: 

෍ 10ିଷ  ൌ 0.999990701675415
ଵ଴య

௜ୀଵ

 

or 

෍ 10ିସ  ൌ 1.000053524971008
ଵ଴ర

௜ୀଵ

 

It can be seen that in the both cases the result should 
be one. The correctness in summation is very 
important in power series computations, e.g. 

෍
1
݊

 ൌ 14.357357
ଵ଴ల

௡ୀଵ

 

or if the reverse order is used 

෍
1
݊

 ൌ 14.392651
ଵ

௡ୀଵ଴ల

 

It means that even for a small number of elements 
we do not obtain correct results.  
 
2.4 Recursion 
Recursion is very useful tool for finding a nice 
description of a problem solution, e.g. well known 
Tower of Hanoi, however if implemented directly it 
might causes some problems, like the stack 
overflow etc. The algorithm itself can be described 
as follows: 
 

MOVE (A, C, n); 
{ MOVE (A, B, n-1); 
 MOVE (A, C, 1); 
 MOVE (B, C, n-1) 
} 
# MOVE (from, to, number) # 
 

This recursive elegant solution is simple to 
implement and only stack overflow can be expected; 
Iterative solution is known as well. 
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The recursive definition usually leads to two 
main searching strategies in implementation:  

• depth first search 
• breath first search 

Those strategies are fundamental to artificial 
intelligence methods.  

Let us explore recursive definition of the well 
known Ackermann function. The Ackerman 
function [44] is defined as follows: 

,ሺ݉ܣ ݊ሻ

ൌ ቐ
݊ ൅ 1                                 ݂݅ ݉ ൌ 0                    
ሺ݉ܣ െ 1,1ሻ                      ݂݅ ܯ ൐ 0 ܽ݊݀ ݊ ൌ 0

൫݉ܣ െ 1, ,ሺ݉ܣ ݊ െ 1ሻ൯  ݂݅ ݉ ൐ 0 ܽ݊݀ ܰ ൐ 0
 

This function is simple, but the problem its 
computation as the value of the function grows very 
fast as  

ሺ4,4ሻܣ ൌ 2ଶమలఱఱయల
ൌ 2ଶభబభవళమవల

 

As the computation is made in integers, no overflow 
is detected at all.  

However engineering applications are more 
oriented to computation with numbers in floating 
point representation. 
 
2.4 Continuous Fractions 
There is one very interesting approach based on 
continuous fractions. It enables to represent even 
irrational numbers in some cases. The basic 
definition can be described as: 

ݔ ൌ ܾ଴ ൅
ܽଵ

ܾଵ ൅ ܽଶ

ܾଶ ൅ ܽଷ

ܾସ ൅ ܽଷ
…

  

If ܽ௜ ് 1 then it is the case of generalized 
continuous fractions. If ܽ௜ ൌ 1 then ߨ can be 
expressed as ߨ ൌ ሾ3; 7,15,1,292,1,1,1,2,1,3,1 … ሿ. 
As ߨ ൌ  can be expressed as ߨ ሺ1ሻ then ݊ܽݐܿݎܽ 4
[48] 

ߨ ൌ
4

1 ൅ 1ଶ

3 ൅ 2ଶ

5 ൅ 3ଶ

…

 

We can see that this number representation is quite 
different and detailed description can be found in 
[14]. 

We have presented some selected fundamental 
issues in numerical computations that have direct 
influence to results of numerical computation. 

There is a significant question how today’s 
computations are reliable and robust as we are using 
a continuous mathematical models, but using 
discrete systems for physical phenomena 
representation; number of digits for a number 
representation is limited. Only very careful coding 
with regard to numerical errors can prevent disaster 
situations and possible losses on humans. 

 
2.4 Matrix Inversion 
Matrix inversion is very often used in solution of 
engineering problems. However in many cases the 
matrix is ill conditioned and the results are not 
checked to the correctness of the solution. Many 
libraries available just return a matrix, which might 
be far from the matrix inverted we would expect 
without any message or warning message.  

Let us assume a matrix inversion as 

࢞࡭ ൌ ࢞   ࢈ ൌ  ࢈ଵି࡭

and the Hilbert’s Matrix    
௜௝ࡴ   ൌ ଵ

௜ା௝ିଵ
 

then the inversion of the matrix is known in the 
analytical form and can be expressed as 

௜௝ࡴ
ିଵ ൌ ሺെ1ሻ௜ା௝ሺ݅ ൅ ݆ െ 1ሻ 

൬݊ ൅ ݅ െ 1
݊ െ ݆ ൰ ቀ݊ ൅ ݆ െ 1

݊ െ ݅ ቁ ቀ݅ ൅ ݆ െ 2
݅ െ 1 ቁ

ଶ
 

 
The inversion of the Hilbert’s matrix can be used to 
evaluate algorithms or available numerical library 
for the stability and correctness of results delivered. 
Matrix inversion and a linear system of equations 
can be solved effectively without division operation 
if projective geometry is used [21], [22]. 
 
 
3 Numerical Disasters 
There are famous examples of numerical disasters. 
When reading the original reports and followed 
comments and details one must be really surprised 
how simple errors occur and should be worried what 
could happen in complex problems solution. Let us 
shortly explore some “traditional” cases.  

The following is a modified excerpt from public 
resources [45] - [47], [50], [51], [54]. 
 
3.1 Explosion of Ariane 5 
An Ariane 5 rocket was launched by the European 
Space Agency (ESA) on June 4, 1996. The 
development cost over $7 billion. The rocket 
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exploded after lift-off in about 40 sec. Destroyed 
rocket and cargo were valued at $500 million. The 
cause of a failure was a software error in inertial 
reference system. From the CNN article: 

“The failure of the Ariane 501 was caused by the 
complete loss of guidance and attitude information 
37 seconds after start of the main engine ignition 
sequence (30 seconds after lift-off). This loss of 
information was due to specification and design 
errors in the software of the inertial reference 
system.  

The internal SRI [Inertial Reference System] 
software exception was caused during execution of 
a data conversion from 64-bit floating point to 16-
bit signed integer value. The floating point number 
which was converted had a value greater than what 
could be represented by a 16-bit signed integer.” 

The conversion from the floating point to the 
integer representation is very dangerous as it is not 
reported by an exception and stored value represents 
an existing number.  

 
Figure 2 

Courtesy of CNN 
 
3.2 Patriot Missile Failure 
The system was originally designed in mid-1960 for 
a short and flexible operation. There were several 
mishaps in the Patriot system failure. The system 
was actually running for more than 100 hours) and 
for intercepting cruise missiles running at MACH 2 
speed and was used to intercept the Scud missile 
running at MACH 5. The computation of 
intercepting and hitting was based on time counting 
with 24 bits integers with the clock of 1/10[s] and 
speed computation in floats. The clock setting to 
1/10[s] was a critical issue and not acceptable even 
for application in sport activities at that time. 
Unfortunately 1/10 = 1/24+1/25+1/28+1/29+1/212+.... 
and therefore the error on 24 bits is about 
0.000000095 and in 100 hours the error is 0.34. As 
the Scud flies at MACH 5, the error was actually 
687[m] and the missile was out of the “range gate” 
area. 

As a result of the fault assumptions, incorrect 
software design and irresponsible attitude of the 
army officials, 28 Americans were killed and over 

100 other people injured in the Iraq’s Scud missile 
attack in Dhahran, Saudi Arabia on February 25, 
1991 according to the GAO report. 

 
3.1 Offshore Platform Sinking 
 

 
Figure 3 

Courtesy of GAO report 
 
Another well known example is the Sleipner 
offshore platform sinking. It should be noted that 
the top deck is about 57 000 tons, drilling and 
support equipments weight about 40 000 tons and 
the deck provides an accommodation for about 200 
people. 
 

 
Courtesy of SINTEF 

Figure 4 
 

The Sleipner platform structure was “optimized” 
using finite element system and the shear stresses 
were underestimated nearly by 50%. It led to serious 
cracks in the structure and leakage that the pumps 
were unable to cope with [51]. The sinking of the 
platform estimated cost is about $700 million. 
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All the above mentioned examples are well 
known; images and the text were used or adapted 
from the referenced resources. 

We have presented above some basic facts on 
numerical precision and examples of some disasters. 
Many engineering problems are somehow 
connected with geometry and geometrical 
computations with respecting physical phenomena 
etc. The majority of computations are made in the 
Euclidean space representation and with the 
Cartesian coordinate system.  

In the following we will show how the non-
Euclidean representation, actually its projective 
extension, and the principle of duality can be used to 
solve some problems in a simple, robust and elegant 
ways. 
 
 
4 Projective Space and Duality 
The Euclidean space representation is used in 
today’s computations using the floating point 
representation. Unfortunately the imprecision of the 
floating point computations is given by a number of 
mantissa digits that is limited. However the 
robustness of algorithms is more connected with the 
mathematical formulation and the actual 
implementation as well. 

In many cases the Euclidean representation leads 
to unnecessary computations that even decrease the 
computational precision. The division operation is 
heavily used in engineering computations and it 
decreases the precision of computation significantly. 
There is a question if the division operation can be 
eliminated or at least postponed within the 
computational pipeline. In geometry, the projective 
representation is a way how things could be made 
simple, robust and easy to implement. Due to 
matrix-vector architecture additional speed can be 
expected as well. 
 
4.1 Projective Space Representation 
The projective space is actually an extension of the 
Euclidean space where no metrics is directly 
available. However it has several advantages, e.g. a 
point at infinity is well represented and can be used 
for computation. 

The homogeneous coordinates are mostly 
introduced with the geometric transformations 
concept and used for the projective space 
representation. Many books and technical papers 
define mathematically how to make transformations 
from the homogeneous coordinates to the Euclidean 
coordinates and vice versa. However, geometrical 

interpretation is missing in nearly all publications. 
Therefore, the question is how to imagine the 
projective space P2 and representations of elements. 

Mutual transformations for the E2 case are 
defined as: 

X = x / w     Y = y /  
where: w ≠ 0, point x = [ x, y: w]T and x∈P2,  
X = [X, Y]T and X∈E3. 

Let us consider a situation at Fig.5.a. We can see 
that the point X∈E2 in the Euclidean space is 
actually a line p in the projective space P2 passing 
the given point X∈E2 at the plane w = 1 (that is the 
Euclidean space actually) and the origin of the 
projective space P2. It means that all the points x∈P2 
of the line (excluding the origin at [0, 0: 0]T) 
represent the same point in the Euclidean space. 
Similarly, transformation for the E3 case is defined 
as: 

X = x / w     Y = y / w     Z = z / w 
where: w ≠ 0, point x = [ x, y, z: w]T and x∈P3,  
X = [X, Y, Z]T and X∈E3. 

 

x y

w

w=1
x

X Y

(a)

p
P2

E2

ρ

a b

c

c=1
D(p)

D( )ρ

A B

(b)

D(P )2

D(E ) 2

 
Figure 5 

Euclidean, projective and dual space representations 
 

Let us assume the Euclidean space E2, see 
Fig.5.a. We actually use the projective space 
whenever we use the implicit representation for 
graphical elements. The Euclidean space E2 is 
represented as a plane w = 1. For simplicity, let us 
consider a line p defined as: 

aX + bY + c = 0 

We can multiply it by w ≠ 0 and we get: 

awX + bwY + cw = 0  , i.e  

ax + by + cw = 0 

i.e.  
pTx = 0 

p = [ a, b: c]T  x = [ x, y: w]T 
It is actually a plane ρ in the projective space P2 
(excluding the point [0, 0: 0]T, i.e. the origin) 
passing through the origin. The vector of 
coefficients p represents the line p∈E2: 

p = [a, b: c]T 
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Let us assume a dual representation in Fig.5.b. In 

the dual representation in which the point [a, b: c]T 
actually represents a line D(p)∈D(E2) given by the 
point [a, b: c]T and the origin of the dual space, see 
[29], [30], [38], [41], [42], [25], [27] for details on 
projective geometry.  

It is necessary to note that any ξ ≠ 0 can multiply 
the equation for a line without any effect to the 
geometry. It means that there are different vectors of 
coefficients p that represent the same line p∈E2.  

In the dual coordinate system, those points 
[ a, b: c]T will form a line D(p). We can project the 
line D(p), e.g. to a plane with c = 1, and we get a 
point. It means that the line p∈E2 is a point in 
the dual representation D(p)∈D(E2) and vice 
versa.  

This a phenomenon of a principle of duality that 
can be used for derivation of some useful formula. 
 
4.2 Principle of Duality 
Let us consider an equation 

pTx = 0 

From the mathematical notation we cannot 
distinguish whether p is a line and x is a point or 
vice versa in the case of P2. It means that a point and 
a line are dual in the case of P2, and a point and a 
plane are dual in the case of P3. 

The principle of duality in P2 states that any 
theorem remains true when we interchange the 
words “point” and “line”, “lie on” and “pass 
through”, “join” and “intersection”, “collinear” and 
“concurrent” and so on. Once the theorem has been 
established, the dual theorem is obtained as 
described above, see [12], [5], [6], [26], [27], [28], 
[35] for details. 

In other words, the principle of duality says that 
in all theorems it is possible to substitute the term 
“point” by the term “line” and the term “line” by the 
term “point” etc. in E2 and the given theorem stays 
valid. Similar duality is valid for E3 as well, i.e. the 
terms “point” and “plane” are dual etc. This helps 
a lot to solve some geometrical problems [3], [4], 
[11], [15], [17]. 
 
4.2.1 E2 Case  
In the E2 case, parameters of a line given by two 
points or an intersection point of two lines are 
computed very often. We will use the duality 
principle in which a point is dual to a line and vice 
versa. 

In the first case, the solution is simple if the 
points are not in the homogeneous coordinates. If 
they are given in the homogeneous coordinates, the 
coordinates are converted to the Euclidean 
coordinates and then parameters of the line are 
computed.  

In the second case, a linear system of equations 
of the degree two is usually solved and division is to 
be performed. It is necessary to note that any 
division operation decreases robustness of 
computation.  

A new approach performing an appropriate 
computation in projective space is presented [31] - , 
[34]. It will allow us to avoid division operations. 
 
Definition1 
The cross-product of two vectors x1, x2∈E2, if given 
in the homogeneous coordinates, is defined as (if 
w = 1 the standard formula is obtained): 

222

11121

zyx
zyx
kji

xx =×  

where: i = [1,0:0]T, j = [0,1:0]T, k = [0,0:1]T  
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Theorem1 
Let two points x1, x2∈E2 be given in the projective 
space. Then a line p∈E2 defined by those two points 
is determined as a cross-product: 

p = x1 × x2 

where: p = [a, b: c]T and xi = [xi, yi: wi]T 
 
Proof1 
Let the line p∈E2 is defined as: 

ax + by + c = 0 
The end-points must satisfy 01 =pxT  and 02 =pxT , 
i.e. 
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It results to a standard: 

1
1

2

1
y
y

a =
     1

1

2

1
x
x

b −=
     22

11
yx
yx

c =
 

and therefore the cross-product defines the line p, 
i.e.  

p  = x1 × x2 
 

Note: This is valid also generally for all the cases 
when w ≠ 0. The proof is left to a reader. 
 
Now we can apply the principle of duality directly. 
Theorem2 
Let two lines p1, p2∈E2 be given in the projective 
space. Then a point x defined as an intersection of 
those two lines is determined as a cross product: 

x = p1 × p2. 
where: x = [x, y: w]T   and p = [a, b: c]T. 
 
Proof2 
This is a direct consequence of the principle of 
duality application. 

222

11121

cba
cba
wyx

=×= ppx  

where: x = [x, y: w]T 
 

These two theorems are very important as they 
enable us to handle some problems defined in the 
homogeneous coordinates directly and make 
computations quite efficient as we can postpone the 
division operation. 

The direct impact of these two theorems is that it 
is very easy to compute a line given by two points in 
E2 and an intersection point of two lines in E2 as 
well. The presented approach is convenient if 
matrix-vector operations are supported in hardware, 
especially for GPU applications.  

Note that we do not need to solve linear system 
of equations to find the intersection point of two 
lines and if the result can remain in the 
homogeneous coordinates, no division operation is 
needed. 

Of course, there is a question, how to handle the 
E3 cases. 
 
4.2.2 E3 Case  
The E3 case is a little bit complicated as the 
projective geometry and duality offer more 

possibilities, but generally a point is dual to a plane 
and vice versa. So let us explore how to find: 

• a plane defined by three points given in the 
homogeneous coordinates, 

• an intersection point of three planes. 
To find a plane is simple if points are converted to 
the Euclidean coordinates. It requires use of the 
division operation and therefore robustness is 
decreased in general. 

Let us explore the extension possibility of the E2 

cases, as discussed above, to the E3 case.  
 
Definition2 
The cross-product of three vectors x1, x2 and x3 is 
defined as: 
 

3333

2222

1111
321

wzyx
wzyx
wzyx
lkji

xxx =××  

where: i = [1,0,0:0]T, j = [0,1,0:0]T, k = [0,0,1:0]T, 
l = [0,0,0:1]T  and xi = [xi, yi, zi: wi]T 
 
Theorem3 
Let three points x1, x2, x3 be given in the projective 
space. Then a plane ρ∈E3 defined by those three 
points is determined as: 

ρ = x1 × x2 × x3 
Proof3 
Let the plane ρ∈E3 be defined as: 

aX + bY + cZ + d = 0 
or 

ax + by + cz + dw = 0 
It can be seen that: 

333

222

111

wzy
wzy
wzy

a =

      333

222

111

wzx
wzx
wzx

b −=

 

333

222

111

wyx
wyx
wyx

c =

     333

222

111

zyx
zyx
zyx

d −=

 
that is the cross-product that defines a plane ρ if 
three points are given and therefore: 
 

ρ = x1 × x2 × x3 
 

Note: The proof of the standard formula, i.e. for the 
case w = 1, is left to a reader. 
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As a point is dual to a plane, a plane is dual to a 
point we can use the principle of duality directly, 
now. 
  
Theorem4 
Let three planes ρ1, ρ2 and ρ3 be given in the 
projective space. Then a point x, which is defined as 
the intersection point of those three planes, is 
determined as:  

x = ρ1 × ρ2 × ρ3 
where: x = [ x, y, z, w]T 
 
 
Proof4 
This is a direct consequence of the principle of 
duality application: 

3333

2222

1111
321

dcba
dcba
dcba
lkji

ρρρx =××=  

 
where: x = [ x, y, z: w]T and ࣋௜ ൌ ሾܽ௜, ܾ௜, ܿ௜: ݀௜ሿ் 

 
These two theorems are very important as they 
enable us to handle some problems defined in the 
homogeneous coordinates efficiently and make 
computations quite efficient. Even more, if an input 
is in the Euclidean or the homogeneous coordinates 
and output can be in the homogeneous coordinates, 
no division is needed. In the case of two parallel 
lines, the homogeneous coordinate w=0. It means 
that we have robust computation of an intersection 
point. 

The direct impact of these two theorems is that it 
is very easy to compute a plane in the E3 given by 
three points in the E3 and compute an intersection 
point determined as an intersection of three planes 
in the E3 and only implementation of one routine is 
needed. Of course, there is a question, how to 
handle lines in the E3 or P3 cases.  

The above mentioned formulae using the 
projective notattion are not well known in general 
and the authors present explicit formulae for the 
Euclidean coordinates, i.e. for w = 1. 
 
4.2.3 Line in E3 defined parametrically 
Let us consider a little bit more difficult problems 
formulated as follows: 

• determine a line q∈E3 if given by two 
points xi , 

• determine a line q∈E3 if given by two 
planes ρi . 

if the parametric form is required. 
These problem formulations seem to be trivial 

problems if wi = 1 or the division operations are 
permitted. In the case of wi ≠ 1 situation is more 
complicated as the points can be converted from the 
projective space to the Euclidean space using a 3 
division operations per a point, i.e.  

2 points × 3 divisions = 6 divisions 
However this is not necessarily needed in many 
algorithms actually as we need only ordering 
information, i.e. if the nearest intersection of a line 
and several planes is computed. It means that we 
need the order of intersection. In this case we can 
use a linear interpolation with non-linear 
monotonical parameterization.  Let us imagine two 
points 

x1 = [x1, y1, z1: w1]T      x2 = [x2, y2, z2: w2]T 

Then the line in a parametric form can be defined as 

x(t) = x1 +( x2 - x1 ) t = x1 + s t   

where the vector s is computed as a difference in the 
projective space, i.e. without transformation to the 
Euclidean space. Nevertheless monotonic 
parameterization is required in many applications 
and points are given in the projective space.  

Let us consider a two points given in the 
homogeneous coordinates.  

On the other hand, a classic rule for robustness is 
to “postpone division operation to the last moment 
possible”. Even if division is permitted, the 2nd case 
seems to be more difficult not only from the 
robustness point of view as the line is considered as 
an intersection of two planes, i.e. a common 
solution of their implicit equations.  

We will derive a new method for the 
computation of a line in the E3 for those two 
possible cases without use of division directly in the 
projective space.  

The Plücker coordinates will be used as they can 
help us to formalize and resolve this problem 
efficiently.  
 
4.3 Plücker Coordinates 
The formulae presented above enable us to handle 
points and planes in E3. Nevertheless, it is necessary 
to handle lines in the E3 in the parametric form 
using the homogeneous coordinates as well and 
avoid the division operations, too. 

A parametric form for a line given by two points 
in the Euclidean space is given as: 
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X(t) = X1 + ( X2 - X1 ) t 

where: t is a parameter t ∈ ( -∞ , ∞ ). 
This is straightforward for the Euclidean 

coordinates and for the homogeneous coordinates if 
the division operation is permitted. It is necessary to 
represent a position and a direction. The question is 
how to make it directly in the projective space using 
the homogeneous coordinates.  

Therefore, in the following the Plücker 
coordinates will be introduced to resolve the case. 
Another approach using the Grassmann coordinate 
system can be found in [6].  

Let us consider two points in the homogeneous 
coordinates: 

x1 = [x1, y1, z: w1]T      x2 = [x2, y2, z2: w2]T 

The Plücker coordinates lij are defined as follows: 
l41 = w1x2 – w2x1          l23 = y1z2 – y2z1 
l42 = w1y2 – w2y1          l31 = z1x2 – z2x1 
l43 = w1z2 – w2z1          l12 = x1y2 – x2y1 

It is possible to express the Plücker coordinates as  
)(

1
)(

2
)(

2
)(

1
jiji

ijl xxxx −=  

alternatively, as an anti-symmetric matrix L: 
TT
1221 xxxxL −=  

where: lij = - lji and lii = 0.  
 
Let us define two vectors ω and v as:  

ω = [l41 , l42 , l43 ]T       v = [l23 , l31 , l12 ]T 

It means that ω represents the “directional vector”, 
while v represents the “positional vector”. It can be 
seen that for the Euclidean space (w = 1) we get:  

X2 – X1 = ω           X1 × X2 = v 

where: Xi = [xi, yi, zi]T/wi are points in the Euclidean 
coordinates. 

For the general case wi ≠ 1 when xi are not ideal 
points, i.e. wi ≠ 0 we get: 

⎟⎟
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−−−=−
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xXX  

It can be seen that for the projective space, vectors 
ω and v can be expressed as: 

( )
( )

( )434241

211221122112

1212

,,
,,

lll
wzwzwywywxwx

ww

=
−−−

=−= XXω

 
and  

( )
( )
( )123123

122112211221

2112

,,
,,

lll
yxyxxzxzzyzy

ww
=−−−

=×= XXv
 

The equations above show the relation between 
vectors ω and v and the Plücker coordinates lij. In 
1871 Klein derived that ωT v = 0 [12], i.e. in the 
Plücker coordinates: 

l23* l41 + l31 *  l42 + l12 * l43  = 0 

This is a homogeneous equation of degree 2 and 
therefore the solution lies on a 4-dimensional 
quadratic hyper-surface. If q is a point on a line  
q(t) = q1 + ω t  given by the Plücker coordinates, it 
must satisfy equation: 

vqω =×  

Let X2 – X1 = ω and X1 × X2 = v. A point on the line 
q(t) = q1 + ω t  is defined  as: 

( ) tt ω
ω
ω vq +

×
= 2  

Please, see Appendix C for derivation of this 
formula. It should be noted that for  t = 0 we do not 

get the point X1. If 
0=ω the given points are equal. 

 
The equation defines a line q(t) in the E3 by two 
points x1 and x2 given in the homogeneous 
coordinates. Of course, we can avoid the division 
operation easily using homogeneous notation for 
a scalar value ( )tq) , as follows: 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +×
= 2

2

ω

ωωω t
t

v
q)

 
 
and the resulting line is defined directly in the 
projective space P3.  

Let us imagine that we have to solve the second 
problem, i.e. a line defined as an intersection of two 
given planes ρ1 and  ρ2 in the Euclidean space:  

ρ1 = [a1, b1, c1, d1]T     ρ2 = [a2, b2, c2, d2]T 

It is well known that the directional vector s of the 
line is given by those two planes as a ratio: 

22

11

22

11

22

11 ::::
ba
ba

ac
ac

cb
cb

sss zyx =
 

 
that is actually the ratio l23 : l31 : l12 if the principle 
of duality is used, i.e. vector of [ai, bi, ci, di]T 
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 instead of [xi, yi, zi, wi]T is used, and it defines the 
vector v instead of ω.  

Now we can apply the principle of duality as we 
can interchange the terms “point” and “plane” and 
exchange v and ω in the Eq.34 and we get: 

( ) tt v
v

v ωq +
×

= 2  

and similarly to the Eq.35, the formula for the line 
in the homogeneous coordinates is given as: 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +×
= 2

2

v
vvv ω

q
t

t)  

If 0=v  then the given planes are parallel. 
 
It means that we have obtained the known formula 
for an intersection of two planes ρ1, ρ2 in the 
Euclidean coordinates, see [7]: 

( ) tt 30 nqq +=  
where: 213 nnn ×= ,   q0 = [X0, Y0, Z0]T and planes 

0: 111 =+ dT xnρ        0: 222 =+ dT xnρ  
The intersection point X0 of three planes in the 
Euclidean coordinates is defined as: 
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ܽଵ ܾଵ ܿଵ
ܽଶ ܾଶ ܿଶ
ܽଷ ܾଷ ܿଷ

อ 

 
If a line is defined by two points and 1=ω , i.e. the 
directional vector is normalized, we get the standard 
formula and the line is simply determined as:  

( ) tt ωω vq +×=  

As a point is dual to a plane we can directly write an 
equation for an intersection of two lines. 

In the case of a line defined by two planes and 
1=v , i.e. the positional vector is normalized, we 

get the line simply determined as:  

( ) tt vvω q +×=  

Those formulae are well known if the Euclidean 
coordinates are used.  
 

Note:  
It is possible to define vectors v and ω for the 

plane intersection case as v = [l41, l42, l43 ]T and 
ω = [l23, l31, l12 ]T, i.e. with swapped Plücker vectors, 
and have the same equation for the line q(t) but the 
symbols would have different interpretation – that is 
the reason, why the priority was given to different 
notation for those two cases. 

However, an intersection of two planes is the 
case very often solved in computer graphics and 
vision. Unfortunately in many cases available 
solutions are not robust or formula are neither 
simple, like above, nor convenient for GPU use. 

In the following a new formulation of two plane 
intersection is presented and if the projective space 
is used for formulation, the solution is quite simple. 

 
Figure 6. Intersection of two planes 

 
If the projective space is used, the solution is quite 
simple. Let us consider two planes ࣋ଵ and ࣋ଵ given 
as  

ଵ࣋ ൌ ሾܽଵ, ܾଵ, ܿଵ: ݀ଵሿ் ࣋ଶ ൌ ሾܽଶ, ܾଶ, ܿଶ: ݀ଶሿ் 
It means that normal vectors of those planes are 

ଵ࢔ ൌ ሾܽଵ, ܾଵ, ܿଵሿ் ࢔ଶ ൌ ሾܽଶ, ܾଶ, ܿଶሿ் 
It is obvious that a directional vector of a line is 
determined as an intersection of two planes ࣋ଵ and 
 ଵ given as࣋

࢙ ൌ ଵ࢔ ൈ  ଶ࢔
However, the “starting” point ࢞଴ of the line is 
determined in quite complicated ways, sometimes 
even not robustly enough and based on a user choice 
of some value, or proposes solution of a system of 
linear equations leading to a standard formula given 
above. 

The formula is quite “horrible” one and for 
students not acceptable as it is too complex and they 
do not see from the formula comes from. 

However, there is a quite simple geometrical 
explanation and solution. So the first question is 
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how to find the “starting” point ࢞଴ of the line ࢖ 
given by two planes ࣋ଵ and ࣋ଶ. If a robust solution 
is required a user should be prevented from a 
selection of some “parameters”.  

Let us imagine that there exists a plane ࣋଴, 
whose normal vector is given as  ࢙ ൌ ଵ࢔ ൈ  ଶ. It࢔
means that its position needs to be “fixed” in the 
space. As there is no other requirement on this 
plane, we can “fix” it so it passes through the origin 
of the coordinate system, i.e. the plane ࣋଴ is given 
as 

଴࣋ ൌ ሾܽ଴, ܾ଴, ܿ଴: 0ሿ்   

and the line  ࢖ is orthogonal to the plane ࣋଴ – 
resulting into a robust geometric position. 

Now, the intersection point of those three planes 
is the point ࢞଴ we are looking for. Coordinates of 
the point ࢞଴  are determined by generalized cross-
product as 

଴࢞ ൌ ଵ࣋ ൈ ଶ࣋ ൈ   ଴࣋

It is obvious that the point ࢞଴ is also the closest 
point on the line to the origin, too. As this formula is 
very compact and it is suitable for GPU application. 
Appendix A presents the extended cross-product 
GPU implementation.  

From the formulation presented above, it can be 
seen that it is not only very simple, easy to 
understand and remember, but also easy to 
implement as well. As a result, the Plücker 
coordinates formulation of this problem solution is 
not needed when looking for such properties. 
 
4.2.1 Geometric Transformations with Duals  
Geometric transformations in computer graphics 
and computer vision are mostly based on 
transformations of points. Nevertheless in many 
cases we have a line given by two points in E2 or a 
plane given by three points in E3. The question is 
how the line or the plane will change if a geometric 
transformation is applied on those points.  

We need to determine a transformation matrix 
 for a transformed line p’, if geometric  ࡽ
transformation ࢀ is applied on points defining the 
line p without a need to re-compute the coefficients 
of the line from the transformed points.  

ᇱ࢖ ൌ ଵ࢞ሺࡽ ൈ ଶሻ࢞ ൌ ሺ࢞ࢀଵሻ ൈ ሺ࢞ࢀଶሻ

ൌ
ሺିࢀଵሻ்ሺ࢞ଵ ൈ ଶሻ࢞

ሻࢀሺݐ݁݀  

it means that ࡽ ൌ ሺିࢀଵሻ்/݀݁ݐሺࢀሻ .  

For the standard geometric transformations 
rotation and translation detሺࢀሻ ൌ 1 the matrix ࡽ is 

simple. Nevertheless the matrix ࡽ can be 
determined for a general transformation. It should 
be noted that e.g. a rotation can be “rewritten” in the 
projective notation as  

ᇱ࢞ ൌ ࢞ ሺ߮ሻࡾ ൌ ൥
cosሺ߮ሻ െ sinሺ߮ሻ 0
sinሺ߮ሻ cosሺ߮ሻ 0

0 0 1
൩  ࢞

ᇱ࢞ ൌ ࢞ Ԣሺ߮ሻࡾ ൌ෥ ൥
ܽ െܾ 0
ܾ ܽ 0
0 0 ܿ

൩ 

where: cosሺ߮ሻ ൌ ܽ/ܿ and sinሺ߮ሻ ൌ ܾ/ܿ . In this 
case detሺࢀሻ ് 1 of course. As the specification is in 
the projective space, we can use ࡽ ൌ ሺିࢀଵሻ் for 
line and plane transformations and save the division 
operation. 

It can be seen that for the case of E3 a similar 
approach can be taken as well.  

As a result of this approach is that we can easily 
solve a problem: Given a line p and a geometric 
transformation T in the projective space. How the 
coefficients of a line are changed? Similarly for a 
plane in E3 and dual problems a solution is simple. 
 
 
5 Barycentric coordinates 
Barycentric coordinates are very often used in 
computer graphics. Usually a system of linear 
equations has to be solved. If the points forming a 
simplex are given in the projective space, solution 
requires use of division operation. However the 
barycentric coordinates can be solved without 
division operation if projective space and 
generalized cross-product are used. 
 
5.1 Euclidean Barycentric Coordinates 
 
In computer graphics Euclidean or homogeneous 
coordinates are widely used as well as parametric 
formulations, e.g. triangles, parametric patches etc. 
The barycentric coordinates have many useful and 
interesting properties [24]. 

 

P1

x1

x

x3

P3

x2

P2

 
Barycentric coordinates in E2 

Figure 7 
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Let us consider a triangle with vertices X1, X2, X3, 
see Fig.7. The position of any point X∈E2 can be 
expressed as 

1 1 2 2 3 3a X a X a X X+ + =  
1 1 2 2 3 3a Y a Y a Y Y+ + =  

If we add an additional condition  
1 2 3 1a a a+ + =  

we get a system of linear equations. The 
coefficients ai are called barycentric coordinates of 
the point X. The point X is inside the triangle if and 
only if 0 1ia≤ ≤ , i = 1,…,3. It is useful to know that 

i = 1,...,3i
i

P
a

P
=

 
where: P is the area of the given triangle and iP is 
the area of the i-th subtriangle. 
 
Note: The barycentric coordinates can easily be 
converted into the usual parametric form. It can be 
seen that 1 2 31a a a= − − . Substituting this we obtain 

( )2 3 1 2 2 3 31 a a X a X a X X− − + + =  
i.e. 

( ) ( )1 2 2 1 3 3 1X a X X a X X X+ − + − =  
and finally we get 

( ) ( )2 2 1 3 3 1 1a X X a X X X X− + − = −  
It is the standard formula usually used. Similarly, it 
may be used for other coordinates. 
 
Now a system of linear equations has to be solved, 
i.e. 

=Aα β  

where: 1 2 3, , Ta a a= ⎡ ⎤⎣ ⎦α  ,  [ ], ,1 TX Y=β and 
1 2 3

1 2 3

1 1 1

X X X
Y Y Y
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A

 
and division operations must be used to solve this 
linear system of equations. In some cases, especially 
when the triangles are very thin, there might be a 
severe problem with the stability of the solution.  

The non-homogeneous system of linear 
equations =Aα β  can be transformed into a 
homogeneous linear system  

1 1 2 2 3 3 4 0b X b X b X b X+ + + =  
1 1 2 2 3 3 4 0b Y b Y b Y b Y+ + + =  
1 2 3 4 0b b b b+ + + =  

where: 4 0b ≠  and 4 1,...,3i ib a b i= − = . 
Rewriting this system in a matrix form, we get 

1
1 2 3

2
1 2 3

3

4
1 1 1 1

b
X X X X

b
Y Y Y Y

b
b

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

0

 
or in the matrix form 

=B b 0         or       [ ][ ]| =A X b 0  

where:  1 2 3 4, , , Tb b b b= ⎡ ⎤⎣ ⎦b ,  [ ], ,1 TX Y=X , 

 

1 2 3

1 2 3

1 1 1

X X X
Y Y Y
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A

  and   [ ]|=B A X  
In another way, we are looking for a vector τ , see 
eq.4, that satisfies the condition 

0T =τ b

where: 1 2 3 4, , , Tτ τ τ τ= ⎡ ⎤⎣ ⎦τ  
This equation can be expressed using the 
determinant form as: 

1 2 3 4

1 2 3

1 2 3
det 0

1 1 1 1

X X X X
Y Y Y Y

τ τ τ τ

=

 
It is obvious that it can be formally written as: 

× ×=b ξ η w

where: 1 2 3 4, , , Tb b b b= ⎡ ⎤⎣ ⎦b    1 2 3, , , TX X X X= ⎡ ⎤⎣ ⎦ξ  

1 2 3, , , TY Y Y Y= ⎡ ⎤⎣ ⎦η     [ ]1,1,1,1 T=w  
and the barycentric coordinates of the point X  are 

given as 
1

1
4

b
a

b
= −

, 
2

2
4

b
a

b
= −

, 
3

3
4

b
a

b
= −

 
We can use the Plücker coordinates notation and 

write  
( )4: 1,...,3i ia b b i= − = . 

If 4 0b = , the triangle is degenerated to a line 
segment or to a point, i.e. it is a singular case, which 
can be correctly detected. 

The given point X  is inside the given triangle if 
and only if   0 1ia≤ ≤ , i = 1,…,3. This condition is 
a little bit more complicated for the homogeneous 
representation and can be expressed by a sequence 

if 4 0b > then 40 ib b≤ − ≤  
                      else 4 0ib b≤ − ≤    1,...,3i =  
This is a very important result as it means that we 
do not need the division operation for testing 
whether the given point X  is inside the given 
triangle! 
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In many applications, the vertices of the given 
triangle and the given point X  can be given in 
homogeneous coordinates. Let us explore how the 
barycentric coordinates could be computed in this 
case.  

The linear system of equations for the 
barycentric coordinates can be rewritten as: 

31 2
1 2 3

1 2 3

xx x x
a a a

w w w w
+ + =

 
31 2

1 2 3
1 2 3

yy y y
a a a

w w w w
+ + =

 
1 2 3 1a a a+ + =  

where: , : T
i i i ix y w= ⎡ ⎤⎣ ⎦x represents the i-th vertex 

triangle in the homogeneous coordinates and 
[ ], , Tx y w=x is the given point in the homogeneous 

coordinates. 
We can multiply the linear system by 0w ≠ , 

0 1,...,3iw i≠ =  and substitute: 
1 1 2 3b a w w w= −     2 2 1 3b a w w w= −  
3 3 1 2b a w w w= −     4 1 2 3b w w w w=  

Thus we get: 
1 1 2 2 3 3 4 0b x b x b x b x+ + + =  
1 1 2 2 3 3 4 0b y b y b y b y+ + + =  
1 1 2 2 3 3 4 0b w b w b w b w+ + + =  

and in the matrix notation: 
1

1 2 3
2

1 2 3
3

1 2 3
4

b
x x x x

b
y y y y

b
w w w w

b

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

0

 
We are looking for a vector τ  that satisfies the 
following equation: 

0T =τ b   
where: the vector τ  is defined as 1 2 3 4, , : Tτ τ τ τ= ⎡ ⎤⎣ ⎦τ  
Then the solution is defined as 

1 2 3 4

1 2 3

1 2 3

1 2 3

det 0
x x x x
y y y y
w w w w

τ τ τ τ

=

 
and we can formally write  

× ×=b ξ η w  

where: 1 2 3 4, , , Tb b b b= ⎡ ⎤⎣ ⎦b    1 2 3, , , Tx x x x= ⎡ ⎤⎣ ⎦ξ  

1 2 3, , , Ty y y y= ⎡ ⎤⎣ ⎦η     1 2 3, , , Tw w w w= ⎡ ⎤⎣ ⎦w  
 
Of course, the conditions in the case that the point is 
inside the given triangle are slightly more complex, 

and the condition 0 1 1,...,3ia i≤ ≤ =  can be 
expressed by the following criteria: 

( )1 2 30 : 1b w w w≤ − ≤  
( )2 1 30 : 1b w w w≤ − ≤  
( )3 1 20 : 1b w w w≤ − ≤  

This means that the barycentric coordinates can be 
computed without using the division operation 
even if the vertices of the given triangle and the 
point x are given in homogeneous coordinates. 
Therefore the approach presented here is more 
robust than the direct computation, i.e. normalizing 
the vertices and point coordinates into Euclidean 
coordinates and standard barycentric coordinates 
computation. In addition, the test if a point is inside 
the given triangle is consequently more robust. 
Of course, there is a natural question: is it possible 
to extend the above mentioned approach to the E3 
case?  

Let us consider the E3 case, where the “point in a 
tetrahedron” test is similar to the “point in a 
triangle” test in E2, see Fig.7. 
 

x1

x

x3

x4

x2

V3

 
Barycentric coordinates in E3 

Figure 7 
 
It can be seen that the barycentric coordinates are 
given as  

1 1 2 2 3 3 4 4a X a X a X a X X+ + + =  
1 1 2 2 3 3 4 4a Y a Y a Y a Y Y+ + + =  
1 1 2 2 3 3 4 4a Z a Z a Z a Z Z+ + + =  
1 2 3 4 1a a a a+ + + =

It is useful to know that 

i = 1,...,3i
i

V
a

V
=

where: V is the volume of the given tetrahedron and 
iV  is the volume of the i-th sub-tetrahedron. 

The non-homogeneous system of linear equations 
can be transformed into a homogeneous linear 
system of equations  
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1 1 2 2 3 3 4 4 5 0b X b X b X b X b X+ + + + =  
1 1 2 2 3 3 4 4 5 0b Y b Y b Y b Y b Y+ + + + =  
1 1 2 2 3 3 4 4 5 0b Z b Z b Z b Z b Z+ + + + =  
1 2 3 4 5 0b b b b b+ + + + =

where: 5 0b ≠  and 5 1,..., 4i ib a b i= − =  
Rewriting this system in matrix form, we get 

1
1 2 3 4

2
1 2 3 4

3
1 2 3 4

4

5
1 1 1 1 1

b
X X X X X

b
Y Y Y Y Y

b
Z Z Z Z Z

b
b

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

0

 
i.e. 

=B b 0        or       [ ][ ]| =A X b 0  
where:  1 2 3 4 5, , , : Tb b b b b= ⎡ ⎤⎣ ⎦b  ,  [ ], , :1 TX Y Z=X  , 

1 2 3 4

1 2 3 4

1 2 3 4

1 1 1 1

X X X X
Y Y Y Y
Z Z Z Z

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A

 and  [ ]|=B A X  
Again, we are looking for a vector τ  that satisfies 
the equation 

0T =τ b  
where: 1 2 3 4 5, , , : Tτ τ τ τ τ= ⎡ ⎤⎣ ⎦τ  
The equation can be expressed using a determinant 
form as: 

1 2 3 4 5

1 2 3 4

1 2 3 4

1 2 3 4

det 0

1 1 1 1 1

X X X X X
Y Y Y Y Y
Z Z Z Z Z

τ τ τ τ τ

=

 
It can be seen that we can formally write again: 

× × ×=b ξ η ζ w  
where: 1 2 3 4 5, , , : Tb b b b b= ⎡ ⎤⎣ ⎦b 1 2 3 4, , , : TX X X X X= ⎡ ⎤⎣ ⎦ξ

1 2 3 4, , , : TY Y Y Y Y= ⎡ ⎤⎣ ⎦η 1 2 3 4, , , : TZ Z Z Z Z= ⎡ ⎤⎣ ⎦ζ

[ ]1,1,1,1:1 T=w  
This means that the barycentric coordinates of the 
point X  are given as: 

1
1

5

b
a

b
= −

, 
2

2
5

b
a

b
= −

,  
3

3
5

b
a

b
= −

,   
4

4
5

b
a

b
= −

 
 
or if we use the Plücker coordinates notation, they 
are given as  

( )5: 1,..., 4i ia b b i= − = . 

The given point X  is inside the given tetrahedron if 
and only if      0 1ia≤ ≤ ,   i = 1,…,4.  
This condition can be expressed by the following 
sequence 
if 5 0b > then 50 ib b≤ − ≤   
               else 5 0ib b≤ − ≤  
If 5 0b = , the tetrahedron is degenerated to a triangle 
or to a line segment or to a point, i.e. singular cases 
that can be correctly detected.  
Let us again consider a case when the tetrahedron 
vertices and the given point are in homogeneous 
coordinates. 
The linear system of equations can be rewritten as: 

31 2 4
1 2 3 4

1 2 3 4

xx x x x
a a a a

w w w w w
+ + + =

 
31 2 4

1 2 3 4
1 2 3 4

yy y y y
a a a a

w w w w w
+ + + =

 
31 2 4

1 2 3 4
1 2 3 4

zz z z z
a a a a

w w w w w
+ + + =

 
1 2 3 4 1a a a a+ + + =

where: , , : T
i i i i ix y z w= ⎡ ⎤⎣ ⎦x represents the i-th vertex 

coordinates in the homogeneous coordinates. 
We can multiply the linear system of equations by

0w ≠ , 0 1,..., 4iw i≠ =  and substitute 
1 1 2 3 4b a w w w w= −         2 2 1 3 4b a w w w w= −  
3 3 1 2 4b a w w w w= −         4 4 1 2 3b a w w w w= −  
5 1 2 3 4b w w w w=

This results into a standard homogeneous linear 
system: 

1 1 2 2 3 3 4 4 5 0b x b x b x b x b x+ + + + =  
1 1 2 2 3 3 4 4 5 0b y b y b y b y b y+ + + + =  
1 1 2 2 3 3 4 4 5 0b z b z b z b z b z+ + + + =  
1 1 2 2 3 3 4 4 5 0w b w b w b w b w b+ + + + =  

that can be expressed in the matrix form as: 
1

1 2 3 4
2

1 2 3 4
3

1 2 3 4
4

1 2 3 4
5

b
x x x x x

b
y y y y y

b
z z z z z

b
w w w w w

b

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

0

 
We are looking for a vector τ  that satisfies the 
equation 

0T =τ b

where: the vector 1 2 3 4 5, , , : Tτ τ τ τ τ= ⎡ ⎤⎣ ⎦τ is defined as 

WSEAS TRANSACTIONS on COMPUTERS Vaclav Skala

E-ISSN: 2224-2872 289 Issue 9, Volume 11, September 2012



 

 

 

1 2 3 4 5

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

det 0
x x x x x
y y y y y
z z z z z
w w w w w

τ τ τ τ τ

=

 
It can be seen that we can formally write: 

× × ×=b ξ η ζ w  
where: 1 2 3 4 5, , , : Tb b b b b= ⎡ ⎤⎣ ⎦b 1 2 3 4, , , : Tx x x x x= ⎡ ⎤⎣ ⎦ξ  

1 2 3 4, , , : Ty y y y y= ⎡ ⎤⎣ ⎦η 1 2 3 4, , , : Tz z z z z= ⎡ ⎤⎣ ⎦ζ   

1 2 3 4, , , : Tw w w w w= ⎡ ⎤⎣ ⎦w  
 
The conditions – if the point is inside the given 
triangle – are slightly more complex and the 
condition 0 1 1,..., 4ia i≤ ≤ =  can be expressed by 
the following criteria: 

( )1 2 3 40 : 1b w w w w≤ − ≤  
( )2 1 3 40 : 1b w w w w≤ − ≤  
( )3 1 2 40 : 1b w w w w≤ − ≤  
( )4 1 2 30 : 1b w w w w≤ − ≤

It is worth noting that the equations for the 
computation of barycentric coordinates given above 
can be simplified for special cases, e.g. if the 
tetrahedron vertices are expressed in the Euclidean 
coordinates or the given point x is expressed in the 
Euclidean coordinates. Such simplifications will 
increase the speed of computation significantly 
without compromising the robustness of the 
computation. Nevertheless, the resulting barycentric 
coordinates are generally in the projective space, i.e. 
the homogeneous coordinate is not equal to ‘1’ in 
general. 
 
5.2 Dual Barycentric Coordinates 
Barycentric coordinates of a point ࢞ ൌ ሾݔ, :ݕ  ሿ் inݓ
the triangle given by points ࢞ଵ, ,ଶ࢞  ଷ in E2 can be࢞
computed directly using homogeneous coordinates 
as ࢞ ෥ ൈ ෥ ࢟ ൈ ෥࢝  ,  
where: ࢞ ෥ ൌ ሾݔଵ, ,ଶݔ ,ଷݔ ෥ ࢟  , ሿ்ݔ ൌ ሾݕଵ, ,ଶݕ ,ଷݕ   ,ሿ்ݕ
෥ ࢞ ൌ ሾݓଵ, ,ଶݓ ,ଷݓ  ሿ்ݓ

෥ ࢞ ൈ ෥ ࢟ ൈ ෥࢝ ൌ ݐ݁݀ ൮

࢏ ࢐ ࢑ ࢒
ଵݔ ଶݔ ଷݔ ݔ
ଵݕ ଶݕ ଷݕ ݕ
ଵݓ ଶݓ ଷݓ ݓ

൲

ൌ ሾߦଵ ଶߦ ଷߦ  ௪ሿ்ߦ
where:  ߣ௜ ൌ െ ௜ߦ ⁄௪ߦ , ݅ ൌ 1, … ,3 [24]. 
 
The ܲ  area of a triangle given by three points in E2 
can be easily computed as  

ܲ ൌ
1
2

ଵ࢞
். ሺ࢞ଶ ൈ ଷሻ࢞ ሺݓଵݓଶݓଷሻ⁄

ൌ ݐ݁݀ ൭
ଵݔ ଶݔ ଷݔ
ଵݕ ଶݕ ଷݕ
ଵݓ ଶݓ ଷݓ

൱ ሺݓଵݓଶݓଷሻ൘  

We can rewrite the result in the projective notation 
as “projective” scalar value as: 

ܲ ൌ ሾ݀݁ݐ ൭
ଵݔ ଶݔ ଷݔ
ଵݕ ଶݕ ଷݕ
ଵݓ ଶݓ ଷݓ

൱ :  ଷሿ்ݓଶݓଵݓ

Similarly a volume of a tetrahedron given by four 
points in E3 can be computed as 

ܸ ൌ
1
6

ଵ࢞
். ሺ࢞ଶ ൈ ଷ࢞ ൈ ସሻ࢞ ሺݓଵݓଶݓଷݓସሻൗ  

It means that the projective formulation is simple 
and matrix-vector GPU architecture supports fast 
computations without using division operation, as 
the result can be represented by homogeneous 
coordinates, in general. 

As the principle of duality is valid, one could 
ask: What is a “dual” value ܩ to a computation of 
the area ܲ if the triangle is given by three lines in 
the “normalized” form, e.g.  ࢇଵ

். ሺࢇଶ ൈ  ଷሻ insteadࢇ
of three points? 

ܩ ൌ ૚ࢇ
.ࢀ ሺࢇ૛ ൈ ૜ሻࢇ ൌ ݐ݁݀ ൭

ܽଵ ܽଶ ܽଷ
ܾଵ ܾଶ ܾଷ
ܿଵ ܿଶ ܿଷ

൱

ൌ ݐ݁݀ ൭
ଵߙݏ݋ܿ ଶߙݏ݋ܿ ଷߙݏ݋ܿ
ଵߙ݊݅ݏ ଶߙ݊݅ݏ ଷߙ݊݅ݏ

݀ଵ ݀ଶ ݀ଷ

൱ 

It can be seen that we can apply some 
transformations so that one vertex of the given 
triangle is in the origin and the line ࢇଵ is on the 
axis ݔ, the edge ࢇଶ  passes the origin and line ࢇଷ is 
in the general position. 

ܩ ൌ ሺࢇࢀଵሻ்ሺିࢀଵሻ்ሺࢇଶ ൈ ሻࢀሺݐ݁݀/ଷሻࢇ
ൌ ଵࢇ  

ଶࢇଵሻ்ሺିࢀሺ்ࢀ் ൈ ሻࢀሺݐ݁݀/ଷሻࢇ
ൌ ଵࢇ

்ሺࢇଶ ൈ  ሻࢀሺݐ݁݀/ଷሻࢇ

As for the “standard” transformations detሺࢀሻ ൌ 1 
and we can write: 

ܩ ൌ ݐ݁݀ ൭
1 ଶߙݏ݋ܿ ଷߙݏ݋ܿ
0 ଶߙ݊݅ݏ ଷߙ݊݅ݏ
0 0 ݀ଷ

൱ ൌ ݀ଷߙ݊݅ݏଶ

ൌ ݀ଷ. ܽ ሺ2ܴሻ⁄ ൌ ܲ/ܴ 

It can be seen that ܩ ൌ ݀ଷߙ݊݅ݏଶ ൌ ܲ/ܴ , where: 
a is the length of the line segment on a3 and ܴ is a 
radius of the circumscribing circle. It can be seen 
that the value ܩ can be used as criterion for a quality 
triangular meshes. 
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Of course, we have to prove that the proposed 
transformation of the given triangle is invariant to 
the  ܩ value. As ݀݁ݐሺࢀሻ ൌ 1 for translation and 
rotation operations, those transformations are 
invariant and value ܩ is not changed by those 
transformations. The value ܩ has a property of a 
distance, i.e. it is in measured in [m], in general.  

In geometric modeling a skewnees factor ܵ is 
used for quality evaluation of triangular meshes 

ܵ ൌ 1 െ ݎ2 ܴ⁄  
where ݎ is a radius of the inscribed circle. 

It seems to that the value G can be used for an 
effective evaluation for quality of triangular meshes 
in E2 or tetrahedron meshes in E3. 
 
 
6 Conclusion 
This paper briefly described some problems in 
numerical computations, advantages of the 
projective space representation use and some well 
known disasters caused by impropriate use on 
numerical computations. Geometrical applications 
and computational methods require robust 
algorithms. Some above described principles have 
been applied recently, e.g. in clipping algorithms 
[23], [34], [39]. 

The projective space representation and 
reformulation of geometrical problems leads to 
more robust algorithms and simpler formulations as 
shown. The matrix-vector operations lead to more 
compact algorithms and due to the today’s hardware 
also to computation acceleration, especially if GPU 
is used. 
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Appendix A 
 
The cross product in 4D is defined as 

3333
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xxx =××  

 
and can be implemented in Cg/HLSL on a GPU as 
follows: 

float4 cross_4D(float4 x1, float4 x2, float4 x3) 
{  float4 a; 
a.x = dot(x1.yzw, cross(x2.yzw, x3.yzw)); 
a.y = ‐ dot(x1.xzw, cross(x2.xzw, x3.xzw)); 
a.z = dot(x1.xyw, cross(x2.xyw, x3.xyw)); 
a.w = ‐ dot(x1.xyz, cross(x2.xyz, x3.xyz)); 
return a; 

} 
or more compactly 

float4 cross_4D(float4 x1, float4 x2, float4 x3) 
{ 
return ( 
  dot(x1.yzw, cross(x2.yzw, x3.yzw)), 
‐ dot(x1.xzw, cross(x2.xzw, x3.xzw)), 
  dot(x1.xyw, cross(x2.xyw, x3.xyw)), 
‐ dot(x1.xyz, cross(x2.xyz, x3.xyz)) ); 
} 
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